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A Blanchard-Kahn Conditions

1 Global Methods

(a) Value function iteration or policy function iteration:

Iterate on a grid {z;}X | either

(i) Value function:

Vn+1(m) = maX) {F(JZ,ZE,) + ﬂVn(iﬂl)},

z'el(z

where V,, — V* as n — o0.

(ii) Policy function (using first-order conditions):

Fy(z,2™) + pV,(2™*) = 0,

by the envelope theorem

:FQ(I‘, x/*2 — ?Fl (x/*, x//*J) ,
Marginal loss ~ Marginal benefit
today of saving

which can be rewritten in terms of the optimal policy function as

" according
to policy n
—

- F2(5U7gn+1($)) = ﬁFl(gnJrl(x)?gn(gnJrl(x))a

! ! !

where g, — ¢* as n — 0.

(BE)



(b) Projection methods:

Approximate the policy function or the value function, using a basis of the function

space, {bj(:z:)};]:l (e.g. polynomials, b;(z) = 27).

J
Vi(z) = Y alb.(z) = Vector a”

TL( ) ]; i ]( ) (J><1)’

such that it characterizes completely V,,. Again, we would usually iterate on value or

policy functions: Given ay,, find o, and wait until «,, settles down. The least-used

method in practice.

2 Local Methods

Exploit the idea that, as long as we are close to (‘in a neighbourhood of”) the steady state
of a model, we may approximate the behaviour of the model in that neighbourhood. We
call this perturbation methods, and consist on approximating the economy’s behaviour
around the (deterministic) steady state.

This is the fastest method to solve a model... But not always good in capturing global

behaviour (i.e. far away from the steady state of the economy).

2.1 Perturbation: Log-linearization of models

The procedure we follow is called log-linearization, and consists on working with log-
deviations from the (deterministic) steady state of the model. To show the procedure, we
will first set up the notation, and then we will explain the approach in a general model.

Afterwards, we will apply it to a bare-bones real-business-cycle (RBC) model .
2.1.1 Notation

e X;: aggregate variable (e.g. GDP in €).

e X: steady state value of the variable X, (this is obtained when all the shocks are

equal to 0, V¢, i.e. solving for the deterministic model).
o z; =In(X,).

e Log-deviations:

X _
iy =In (Y’f) — In(X;) — In(X).
—_—
% deviation
from steady state



The First-order Taylor approximation of g(X;) = In (Xt /X ) around X; = X is given
by

Ty = g(Xy) = g(X) + gl(Xt)|Xt:X [ X — X]

1)‘(+1
= In| = —_—
X X,

Then 7, is the percentage deviation of X, from the steady state. !.

[X: — X]

X=X

2.2 General Model

e State variables:

— S ng x 1 vector of endogenous state variables (e.g. K;).
— Zy: nyz x 1 vector of exogenous state variables (e.g. A).

e Control variables:

— X;: nx x 1 vector of non-states (e.g. Cy).

— Spi1: ng x 1 (e.g. Kiyq).

2.2.1 First Step: Find the equations that characterize the equilibrium (opti-
mality, feasibility,...)

e ny exogenous equations (to be seen later, equivalent to (Eq.0)).

e System of ng+ny equations characterizing the solutions (to be seen later, equivalent
to (Eq.1), (Eq.2)).

e Note that the number of equations must be equal to that of unknowns.

2.2.2 Second Step: Find the deterministic steady state

e Solve ng + nx equilibrium equations for ( S, X

ngx1l nx X

1), setting all shock to zero Vt.

1E.g. #; = 0.02 means that the variable X is 2% away from it’s steady state value X.




2.2.3 Third Step: Log-linearize the equilibrium equations

(a) First method:

1. Write the equilibrium equations in log deviations, i.e. for each component 7 of
S write
i (i) 589 i (i (i
S = 80" — n(SY) = In(8D) + 57
Do the same for each component ¢ of X and 7, i.e.,

&
Y

X9 = X0
Zt(i) = Z(i)eét(i).

2. Perform a 1st-order Taylor approximation of the equilibrium equations in the

variables §,§i), :E,gi), ,Et(i) (and their leads and lags) around §§i) =0, ng) =0, Zfi) =

0 (which is in fact the steady state of the model).

(b) Second method:?

1. First take logs of equilibrium conditions.

2. Expand in 59, i;gi), Z,Si).

2.2.4 Fourth Step: Solve for policy

We will use the method of undetermined coefficients. In particular, we will guess a linear

form (in terms of the state variables) for the policy function:

~X = H ‘?t :
St+1 (nx+ns)x(ns+nz) Zt

(nx+ng)x1 (ns+nz)x1
where
Hxs  Hxz
H — | (mxxns) (nxxnz)
Hgs Hgsz
(nsxng) (nsxnz)
Thus we can write ~ .
[Xt]:[HXS HXZ”St] )
Si1 Hss Hsz Zi |

Consider the log-linearized equilibrium equations given by

X X -
Ay o= A EL| 1Y+ B Z, . (A)
(nx+ng)x(nx+ns) St (nx+ng)x(nx+ng) St+1 [(nx+ng)xnz](nzx1)

(nx+ns)><1 (nx+n5)><1

2Homework: Methods 1 and 2 must give exactly the same result.



where the coefficients of the matrices Ay, A; and By are a function of model parameters

and steady state values (e.g. K, C, ...), and

Zii= A, Zy +en, Elea] = ¢ |- (2)

nZ><1 (nzxnz)(nle) anl
0
Denoting by I,¢ the nS x nS identity matrix, and substituting (H) in (A) we have
Hxs H S Hys H S
Ay xs Hxz A, xs lxz i+
I 0 Zy I, 0 Zii1
As the matrix H is deterministic, we can express the previous equation as
Hxs H S Hys H S
Ay xs Hxz g, xs lixz E, Ga
]nS O Zt Ins 0 Zt+1
From (H) and (Z) the expectation term can be rewritten as
S Hss H S 0
E, P+l _E, ss 1lsz | -
Zt+1 0 Az Zt [nZ

o 2] &)
z t

} + BoZ,.

} +BoZ. (1)

where I,z denotes the nZ x nZ identity matrix and where the last equality follows from
the matrix being deterministic and because the values of S; and Z, are known in ¢, which
allows to get rid of the expectation. Substituting (2) in (1) gives

Hys Hxy S, Hgs Hsy S, .
A - =A| H H - + By Z,. 3
0[[ O ][Zt] 1[ XS XZ][ O AZ][Z 04t ()

ng t

Rewrite the last term of the previous equation as

0  Bos g
BoZi=| ~"ome )
0 Byz Zy
nzXng

then we can rewrite (3) as

A Hxs Hxy A Hxs Hxy Hgs Hgy
0 - A
I 0 0 0 A,

ns
~-

=K

atEdl{EIR

This equation has to hold for all St and for all Zt. Thus we have that the matrix K must

be a matrix with all the elements equal to zero. Note that the dimension of this matrix

6



is the same of the matrix H, i.e. (nx + ng) x (ng + nz). This is the same number of
equations that we have to solve in order to get our solution.

In general, we can have multiple solutions to our problem as we have matrix products
HxsHgs and HxgHgyz, thus the system of equations is (usually) non-linear. To check
which of this solutions are valid for our purposes we must check the eigenvalues of the

matrix
Siy1 = HssS; + Hsy Zyy,

which is the equilibrium law of motion. If all the eigenvalues are (strictly) within the unit

circle, then we will have stable dynamics.

2.3 Example 1: Real-business-cycle (RBC) model

e Preferences:

cl
1—~

u(Cy) =

e Production function:
Y, = A KPLYe,

where we normalize L = 1.3
e Stochastic process for TPF":
In(Asi1) = pln(Ay) + oeg41,
where € ~ N(0, 1).
e Resource constraint (w.l.o.g, for simplicity we assume full depreciation):

Ci+ K1 =Y,

2.3.1 First Step: Find the equations that characterize the equilibrium (opti-
mality, feasibility,...)

The system of equilibrium equations is given by
In(As41) = pIn(A;) + 041, (Eq.0)
which is already solved (in the sense that it is already log-linearized) and the equations
Cy + K1 = AKY (Eq.1)

C; 7 = BE, [CllaAu KT (Eq.2)

3Note: leisure is not valued.



2.3.2 Second Step: Find the deterministic steady state

Note that (Eq.0) is an AR(1) process, and therefore we can rewrite it as
w . w . .
ay = pay_1 +oey = p(pay_o +0€i_1) + 08y = -+ = Z ople; = O'Z o Le;.
=0 =0
where L is the lag operator. Then, to find the deterministic steady state level of A, we

set £,—; = 0, Vj obtaining

therefore

l

aw=a=0 = a=mh(4) = A=c"=e"=1.

Given A =1, then Y = AK{® = K and thus

C+K=Y=K" (1ss)
C7=BE[CTaK*"| = K= (af)T=. (2ss)

Note that substituting (2ss) in (1ss) we obtain

C=EK*—K = (ap) ™ — (af}) 5.

2.3.3 Third Step: Log-linearize the equilibrium equations

For this example, we will use the first method (i.e. we will write the equilibrium equations
in log deviations, doing that for each component of S and for each component of X, and
finally taking a first-order Taylor approximation of the equilibrium equations in each of

) &) () (@) _ (@)

the variables EEZ , &y, 2y around §Ei) =7, =2 =0).

From (Eq.0) we can write
In (/_16&“1) =pln (fle&t) + 041,
which implies
In ([1) + a1 =p [ln (fl) + &t] + 0E441.

As A = 1, then we have
dt—i—l = pdt + 0€¢41 (ng)

From (Eq.2) we can write

(C_’eé’f)_7 = [E, [(C_'eét“)_v a A+ (l_(e';t“)all ;



where rewriting

C_’_’Ye—’Yét = ﬁa/_lc_'_vf_(a_l E; [6_76t+1eat+1e(a—1)/}t+1] ’
—_—
=C—7 by (2ss)

and which can finally be expressed as
e*’YEt _ ]Et [e*’yét+leat+le(a*1)]’%t+l:| _ ]Et [€*W5z+1+flt+1+(a*1)]~€z+1] ) (4)
On the one hand, the Taylor expansion of the LHS of (4) around ¢ = 0 is given by
e & o0 4 (— fye—vét‘ét:0> G — 0] = 1 — &, (5)

while, on the other hand, the Taylor expansion of the RHS of (4) around (¢;1, @441, l;:tﬂ) =
(0,0,0) is given by

_fye_/yct+1+at+1+(a_1)kt+1 Ga1—0
et et o 0 et _1k i
e Yéi41+ai1+(a—1)kiy1 ~ el 4 e Yet41+at+1+(a—1)ki41 - 0
v 5 Y ~ 6
(a — 1)6 Yetr1+ar1+(a—1)kit1 kt+1 —0 ( )

(0,0,0)

~ 1 — 1 + Qg + (0 — Doy
Therefore we can rewrite (4) as
1 —~é =K, [1 = Y1 + g1 — (1= Oé)];?tﬂ] ;
where we can substitute (0¢/) obtaining
1—~¢ =E, [1 — YCy1 + pay + oy — (1 — a)/;tﬂ] )

Finally, as E; [¢;] = 0, then the only unknown at time ¢ is ¢, and thus we can rewrite

the previous equation as
— & = pay — (1 — a)ker1 — VB [Gr41] - (2¢0)
From (Eq.1) we can write
Ce® + Kefrt = A <f(e’~“>a — Rogittake (7)

as A = 1. Again we will do a Taylor expansion around the steady state. On the one hand,
the Taylor expansion of the LHS of (7) (i.e., e* around ¢; = 0) is almost the same as the
one given by (5), where we only have to get rid of the parameter v. The same applies
to the second term of the left-hand-side. On the other hand, the Taylor expansion of the
RHS of (7) (i.e., e®™k) around (a, k) = (0,0) is given by

~ /
- i 0 e&t—&-akt
ettt ~ eV 4 o
aeat-i-ockt

=0 i

a =1+ + aky, (8)
ki —0

(0.0)

9



and therefore we can write (7) as
C*(1+6t)+l_(<1+l%t+1> = K~ <1+dt+al%t>,
or, equivalently

C+K—-—K*“+Cé¢ + Kk = +K%y + Kok,
—
=0 by (1ss)

where dividing both sides by K¢ yields
C_’f_(_aét + [_(l—oszprl = dt + Oé];)t. (166)

To sum up, the log-linearized equations are

At41 = Pat + 0€¢11, (0e¢)
kaiaét + Kliaii'prl = dt + Oé/;?t, (166)
—’Yét = P&t — (1 — Oé)];t+1 — ’}/]Et [Et+1] . (266)

In the spirit of the general model given by (A), we can write (1¢/) and (2¢/) in matrix

L el L
- 0 Ky -y —(1-a) ki1 P

2.3.4 Fourth Step: Solve for policy

form as

We use the method of undetermined coefficients, i.e. we make the following guess:

Et = nckl%t + ncadta (pl)
ko1 = Nerky + Niadly, (p2)

which implies imposing that our controls are linear functions of the state variables of the

problem. In the notation of the general model, we guess

6t _ Nk Mea ];t
ki1 Nk Mka ay

From now on we will look for the parameters 1., Nea, Mk Tra-
First we will start with (1£€). Substitute (pl) and (p2) in (14¢) obtaining

CK™ <77ck/~€t + ncadt> + K ('ﬂkkift + 771m6~lt> = a + ak,
collecting terms in k; and a, yields
l;:t (C’Kﬁanck + Kliaﬁkk - Oé) + (~lt (C’Kﬁanca + Klianka - 1) = 0.

10



This equation must hold for all (k;, @). The only way in which this can happen is when

both brackets are equal to zero*. Then we must have

CK N + K iy — a = 0, (H1)
CK “Ngg + K" npg — 1 = 0. (H2)

Solving for 7. and 7., yields

o — K",

Nek = C,K_a 5 (nck)
1-— Klianka

Nea = C—,K_a . (nca)

Second, we continue with (2¢¢). First, we start with the expectation term, where using

(pl) we obtain
E; [Cria] = Ey [Uckiftﬂ + Uca&tﬂ] :
and substituting (p2) and (06¢) yields
E; [Ci1] = Ey [ﬁck <77kkl~€t + nkadt) + Nea (par + O'Et)]
= B [t (ke + miad) | + o [ (0 + 020)]
= Tk (nkk%t + nkadt> + Tlea it
= ek + Gy (NekTa + Pllea) (10)

where the second equality follows from the properties of the expectation operator, the
third equality from the fact that in the first expectation, everything is known at time ¢
and the same happens in the second expectation, where we also use the fact that ¢; is zero
mean. Note that at this stage we obtain multiplicative terms in the n’s, which will lead to

non-linearities later on. Substituting now (10) in (2¢¢) gives us the following expression
— 3¢ = piy — (1= )k — [ncwkkl%t + Gy (NekMka + pnca)] :
where we substitute again (pl) and (p2) obtaining
- (nck%t + ncadt) = pay — (1 — o) [nkkfft + nkaat] —7 [ncknkk%t + a¢ (Mekka + pnca)] :

collecting the equal terms yields

ket [= e + (1 — @)ner + Y0esnir] + @ [~V0ea — p + (1 — @)0ka + ¥ (NekNka + pllea)] = 0.

4Example: take k, = 0 and a; # 0. Then, if the second bracket is different from zero, the condition

would not be satisfied.

11



Again, this equation must hold for all %, ;. The only way for this to work is that both
brackets are equal to zero. Then we get two more equations since we must have

—Ner + (1 = @)1k + e = 0, (H3)

~YNea — P + (1 - a)nka + VYNekMka T VPNea = 07 (H4)

The most important parameter is 7y, thus we will solve for it. To this end, take (H3)
and divide by 7 to obtain

l—«

/R Nk + NekNik = 0,

and now substitute (1) to obtain

a— K™ 11—« a— K=,
- =7 + Nk +
CK v

After rearranging some terms we arrive to

1l -«

aC 'Ky, — C Kng, — aC P K™ + O Ky, + Mk = 0,

where multiplying both sides by C' and further rearranging yields

(1—-a)C

—f(?’}ik—l-nkk (CYKa—i-K—F N

)—aKazo.

This is a quadratic form that can be solved as

v v

Nkk = 7 (—I_()

~ (ake+ K+ 229) o \/(&K"‘ + K+ M)Q — 4(=K) (~aKe)

_ _ ~ _ _ A\ 2 _
aKe + K + 1=0C ¢ \/ (aKa + K+ —“‘j”) — JaK1+e
. 7 . (11)

In general, this quadratic form will have two real valued solutions (as long as we don’t

make any crazy calibration). Let’s call them 71 and ng; 2. Without loss of generality we
define N1 < Mk,2, where ngg1 € (0,1) and g2 > 1 (this can be shown, not done here).
Does this mean that we will have two different solutions that take us to the steady state
of the model? Generally the answer is no. Both solutions will fulfil all the equations but

one of them, (ngx2), will violate the transversality condition. To see this rewrite (p2) as
Fer = Miekie—1 + Mralie—r
= Mk (nkkl%t—Q + Ukadt—2> + Malie—1 = Meght—2 + MrNkatie—2 + Mialie—1

= Nk (Ukkkt—za + nkadt—i’)) + Mk Mhat—2 + Miali—1

t
N L
= Tjg.ko + Z Mo Mkalit—j
j=1

12



Therefore, if 7, > 1 the dynamics will be unstable (k, would explode) and we will

eventually violate the transversality condition given by

Tim By [37 Kr1Uc] = Jim By [57 K Cp)

2.4 Example 2: Leisure-labour decision

Consider the preferences between consumption C; and leisure L; given by
1— +1
v Lf

t
L=y
The optimality condition that characterizes the leisure-labour decision is then given by

3
ur, L;
—_— = = I/|/ 5 12
uc 770;7 ' (12)

where W; is the real wage. For this example, we will use the second method of log-

linearization (i.e. take logs of the equilibrium conditions and expand in §§i),£§i),2t(i)).

First we compute the deterministic steady state of this problem, which is given by

nLtCY =W,
which in logs can be expressed as
Inn+&mL+~yInC =InW. (13)
Second, taking logs in (12) yields
Inn+&nL, +vyInC; = InW,. (14)

Now, subtracting (14) from (13) yields
EnL;—InL)+~v(InC; —InC) =In W, — InW,

where, following our usual notation we can write Iy = In(L;) — In(L) (the same applies to
C; and W;) obtaining
fit + ¢ = Wy

References

Blanchard, O. J. and Kahn, C. M. (1980), ‘The solution of linear difference models under

rational expectations’, Econometrica 48(5).
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A Blanchard-Kahn Conditions

This section is based on (Blanchard and Kahn, 1980). Consider the system of equations

Xt
]Et [Pt-l-l]

= A [ Xe ] + BZ, (15)

t

where A is an (n +m) x (n +m) matrix, B is an (n +m) x k matrix and
e X; e R" is a vector of predetermined variables at ¢ (e.g. K; in the RBC model),
e P, e R™ is a vector of non-predetermined variables at ¢ (e.g. I, V3, ...),
e 7, € R” is a vector of exogenous shocks.

The difference between predetermined and non-predetermined variables is extremely im-
portant. Let {2, be the information set at ¢, which includes past and current values of X,
P, Z. A predetermined variable is a function only of variables known at time ¢, that is of
variables in €, such that X1 = E; [X;;1]|Q41] whatever the realization of any variable
in €2;,1. A non-predetermined variable P;,; can be a function of any variable in €2;,1, so
that we can conclude that Py, = E; [P,41]€,1] only if the realization of all variables in
;41 are equal to their expectations conditional on 2.

We further assume that shocks don’t explode too fast, i.e. V¢, 37, € R* and 36, e R
such that

—(1+)"Z < B [Zei| %) < (1 +49)"Z, Vi=0,1,2,...

This condition rules out exponential growth of the expectation of Z;,;, held at time ¢.

Definition A.1 (Solution). A solution {X;, P},-, is a stochastic sequence of variables

in 0y which satisfies (15) for any realization of the shocks, ¥t and where expectations don’t

explode, 1.e.
vt, [ e R™™™  and o € R,
t
such that
X Xt X
1+ | T <E | T <@a+a | |, vi=0,1,2,...  (16)
P, Piyi B

Proposition A.1. Let m be the number of eigenvalues of A which lie outside the unit
circle (i.e. |N;| > 1). Then

e (Blanchard and Kahn, 1980, Proposition 1) If m = m, i.e. if the number of eigen-
values of A outside the unit circle is equal to the number of non-predetermined

variables, then there exists a unique solution.

14



e (Blanchard and Kahn, 1980, Proposition 2) If m > m, i.e. if the number of eigen-
values outside the unit circle exceeds the number of non-predetermined variables,

there is no solution satisfying both (15) and the non-explosion condition.

e (Blanchard and Kahn, 1980, Proposition 3) If m < m, i.e. if the number of eigen-
values outside the unit circle is less than the number of non-predetermined variables,

there is an infinity of solutions (i.e., the solution is indeterminate).
Example A.1. Suppose the following equilibrium equation for inflation:
Ty = pEt [7Tt+1] + &4, (17)

where we assume that €, 1s an i.i.d. error with zero mean. Furthermore, assume that

p = 0. Let us rewrite it as

1 1
E, [7Tt+1] = —Ty — —&.
Guess that the solution is of the form
Ty = Cop_t + &4, VCO € R, (18)

where Cy € R is an arbitrary number. Substituting (18) in (17) we obtain

T = pEy [Cop™ ™) + g1 + &
= pE; [Cop™ "] + Ey [er11] + &
= pCop™ "V + ¢,
= Cop~ " + &1

Therefore, the solution given by (18) is valid ¥p = 0 and VCy € R. To evaluate the
solution of this model for different values of these parameters, we apply Proposition A.1.
In this example, 7 is a non-predetermined variable, thus m = 1 = m. Furthermore, the
matrix A and its only eigenvalue X\ is given by the scalar

A:[l] = )\:1_
P P

Therefore we have that

e If|p| <1, then X\ > 1 is strictly outside the unit circle and then (17) has a unique
solution. In particular, the unique solution that satisfies the non explosive condition
(16) is Cy = 0, and therefore m; = &;.

15
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Figure 1: pe (0,1). There is a unique stable solution, but oo unstable solutions. Note that BK rules
out hyper-inflationary/deflationary equilibria here! But these may be important equilibria of our model,

so this is a word of caution with applying BK blindly (see also Cochrane’s critique of the New-Keynesian
model).

o If|p| <1, then X\ < 1 is inside the unit circle, and then (17) has multiple solutions®.
In particular, we have an infinite number of solutions (one for each Cy) that satisfy

the non explosive condition (16).

Eo[me] 4
Co=1
K
Co=0 f
/,
Co=—1

Figure 2: |p| > 1. There are  stable solutions, i.e., the solution is indeterminate.

Example A.2 (RBC model). Define

—a CK—@ ~Klm* 0
Ay = “ , A= , and By = P
0 — —(1-a) —y 1

5We call this situation multiplicity of equilibria or indeterminacy.
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Then we can rewrite (9) as®

+ Ba/t,

e ][R
Eq¢[Ci11] Ct

A= AI_IA(), and B = Al_lBo.

where

By Proposition A.1, m = 1, thus this system will have a unique (stable) solution as long

as A has exactly one eigenvalue strictly outside the unit circle.

6Note that the shock Z; in (Blanchard and Kahn, 1980) need not be i.i.d.!
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