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1 Global Methods

(a) Value function iteration or policy function iteration:

Iterate on a grid txku
K
k“1 either

(i) Value function:

Vn`1pxq “ max
x1PΓpxq

tF px, x1q ` βVnpx
1
qu , (BE)

where Vn ÝÑ V ˚ as nÑ 8.

(ii) Policy function (using first-order conditions):

F2px, x
1˚
q ` βVnpx

1˚
q “ 0,

by the envelope theorem

´F2px, x
1˚
q

looooomooooon

Marginal loss
today

“ βF1px
1˚, x2˚q

loooooomoooooon

Marginal benefit
of saving

,

which can be rewritten in terms of the optimal policy function as

´ F2px, gn`1pxq
loomoon

x1

q “ βF1pgn`1pxq
loomoon

x1

,

x2 according
to policy n

hkkkkkikkkkkj

gnpgn`1pxq
loomoon

x1

q,

where gn ÝÑ g˚ as nÑ 8.
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(b) Projection methods:

Approximate the policy function or the value function, using a basis of the function

space, tbjpxqu
J
j“1 (e.g. polynomials, bjpxq “ xj).

Vnpxq “
J
ÿ

j“1

α
pnq
j bjpxq ùñ Vector αn

pJˆ1q
,

such that it characterizes completely Vn. Again, we would usually iterate on value or

policy functions: Given αn, find αn`1 and wait until αn settles down. The least-used

method in practice.

2 Local Methods

Exploit the idea that, as long as we are close to (‘in a neighbourhood of’) the steady state

of a model, we may approximate the behaviour of the model in that neighbourhood. We

call this perturbation methods, and consist on approximating the economy’s behaviour

around the (deterministic) steady state.

This is the fastest method to solve a model... But not always good in capturing global

behaviour (i.e. far away from the steady state of the economy).

2.1 Perturbation: Log-linearization of models

The procedure we follow is called log-linearization, and consists on working with log-

deviations from the (deterministic) steady state of the model. To show the procedure, we

will first set up the notation, and then we will explain the approach in a general model.

Afterwards, we will apply it to a bare-bones real-business-cycle (RBC) model .

2.1.1 Notation

• Xt: aggregate variable (e.g. GDP in e).

• X̄: steady state value of the variable Xt (this is obtained when all the shocks are

equal to 0, @t, i.e. solving for the deterministic model).

• xt ” lnpXtq.

• Log-deviations:

x̃t ” ln

ˆ

Xt

X̄

˙

“ lnpXtq ´ lnpX̄q
loooooooomoooooooon

% deviation
from steady state

.
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The First-order Taylor approximation of gpXtq ” ln
`

Xt{X̄
˘

around Xt “ X̄ is given

by

x̃t “ gpXtq – gpX̄q ` g1pXtq|Xt“X̄ rXt ´ X̄s

– ln

ˆ

X̄

X̄

˙

`
1

Xt

ˇ

ˇ

ˇ

ˇ

Xt“X̄

rXt ´ X̄s

–
Xt ´ X̄

X̄
.

Then x̃t is the percentage deviation of Xt from the steady state. 1.

2.2 General Model

• State variables:

– St: nS ˆ 1 vector of endogenous state variables (e.g. Kt).

– Zt: nZ ˆ 1 vector of exogenous state variables (e.g. At).

• Control variables:

– Xt: nX ˆ 1 vector of non-states (e.g. Ct).

– St`1: nS ˆ 1 (e.g. Kt`1).

2.2.1 First Step: Find the equations that characterize the equilibrium (opti-

mality, feasibility,...)

• nZ exogenous equations (to be seen later, equivalent to (Eq.0)).

• System of nS`nX equations characterizing the solutions (to be seen later, equivalent

to (Eq.1), (Eq.2)).

• Note that the number of equations must be equal to that of unknowns.

2.2.2 Second Step: Find the deterministic steady state

• Solve nS ` nX equilibrium equations for

ˆ

S̄
nSˆ1

, X̄
nXˆ1

˙

, setting all shock to zero @t.

1E.g. x̃t “ 0.02 means that the variable Xt is 2% away from it’s steady state value X̄.
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2.2.3 Third Step: Log-linearize the equilibrium equations

(a) First method:

1. Write the equilibrium equations in log deviations, i.e. for each component i of

S write

S
piq
t “ S̄piqes̃

piq
t ùñ lnpS

piq
t q “ lnpS̄piqq ` s̃

piq
t .

Do the same for each component i of X and Z, i.e.,

X
piq
t “ X̄piqex̃

piq
t ,

Z
piq
t “ Z̄piqez̃

piq
t .

2. Perform a 1st-order Taylor approximation of the equilibrium equations in the

variables s̃
piq
t , x̃

piq
t , z̃

piq
t (and their leads and lags) around s̃

piq
t “ 0, x̃

piq
t “ 0, z̃

piq
t “

0 (which is in fact the steady state of the model).

(b) Second method:2

1. First take logs of equilibrium conditions.

2. Expand in s̃
piq
t , x̃

piq
t , z̃

piq
t .

2.2.4 Fourth Step: Solve for policy

We will use the method of undetermined coefficients. In particular, we will guess a linear

form (in terms of the state variables) for the policy function:
«

X̃t

S̃t`1

ff

pnX`nSqˆ1

“ H
pnX`nSqˆpnS`nZq

«

S̃t

Z̃t

ff

pnS`nZqˆ1

,

where

H “

»

—

–

HXS
pnXˆnSq

HXZ
pnXˆnZq

HSS
pnSˆnSq

HSZ
pnSˆnZq

fi

ffi

fl

.

Thus we can write
«

X̃t

S̃t`1

ff

“

«

HXS HXZ

HSS HSZ

ff«

S̃t

Z̃t

ff

. (H)

Consider the log-linearized equilibrium equations given by

A0
pnX`nSqˆpnX`nSq

«

X̃t

S̃t

ff

pnX`nSqˆ1

“ A1
pnX`nSqˆpnX`nSq

Et

#«

X̃t`1

S̃t`1

ff+

pnX`nSqˆ1

` B0
rpnX`nSqˆnZ s

Z̃t
pnZˆ1q

, (A)

2Homework: Methods 1 and 2 must give exactly the same result.
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where the coefficients of the matrices A0, A1 and B0 are a function of model parameters

and steady state values (e.g. K̄, C̄, . . .), and

Z̃t`1
nZˆ1

“ Az
pnZˆnZq

Z̃t
pnZˆ1q

` εt`1
nZˆ1

, E rεt`1s “

»

—

—

–

0
...

0

fi

ffi

ffi

fl

. (Z)

Denoting by InS the nS ˆ nS identity matrix, and substituting (H) in (A) we have

A0

«

HXS HXZ

InS 0

ff«

S̃t

Z̃t

ff

“ A1Et

#«

HXS HXZ

InS 0

ff«

S̃t`1

Z̃t`1

ff+

`B0Z̃t.

As the matrix H is deterministic, we can express the previous equation as

A0

«

HXS HXZ

InS 0

ff«

S̃t

Z̃t

ff

“ A1

«

HXS HXZ

InS 0

ff

Et

#«

S̃t`1

Z̃t`1

ff+

`B0Z̃t. (1)

From (H) and (Z) the expectation term can be rewritten as

Et

#«

S̃t`1

Z̃t`1

ff+

“ Et

#«

HSS HSZ

0 Az

ff«

S̃t

Z̃t

ff

`

«

0

InZ

ff

εt`1

+

“

«

HSS HSZ

0 Az

ff«

S̃t

Z̃t

ff

, (2)

where InZ denotes the nZ ˆ nZ identity matrix and where the last equality follows from

the matrix being deterministic and because the values of S̃t and Z̃t are known in t, which

allows to get rid of the expectation. Substituting (2) in (1) gives

A0

«

HXS HXZ

InS 0

ff«

S̃t

Z̃t

ff

“ A1

”

HXS HXZ

ı

«

HSS HSZ

0 Az

ff«

S̃t

Z̃t

ff

`B0Z̃t. (3)

Rewrite the last term of the previous equation as

B0Z̃t “

»

—

–

0 B0S
nSˆnZ

0 B0Z
nZˆnZ

fi

ffi

fl

«

S̃t

Z̃t

ff

,

then we can rewrite (3) as
#

A0

«

HXS HXZ

InS 0

ff

´ A1

«

HXS HXZ

InS 0

ff«

HSS HSZ

0 Az

ff

´

«

0 B0S

0 B0Z

ff+

loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon

“K

«

S̃t

Z̃t

ff

“ 0.

This equation has to hold for all S̃t and for all Z̃t. Thus we have that the matrix K must

be a matrix with all the elements equal to zero. Note that the dimension of this matrix
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is the same of the matrix H, i.e. pnX ` nSq ˆ pnS ` nZq. This is the same number of

equations that we have to solve in order to get our solution.

In general, we can have multiple solutions to our problem as we have matrix products

HXSHSS and HXSHSZ , thus the system of equations is (usually) non-linear. To check

which of this solutions are valid for our purposes we must check the eigenvalues of the

matrix

S̃t`1 “ HSSS̃t `HSZZ̃t`1,

which is the equilibrium law of motion. If all the eigenvalues are (strictly) within the unit

circle, then we will have stable dynamics.

2.3 Example 1: Real-business-cycle (RBC) model

• Preferences:

upCtq “
C1´γ
t

1´ γ
.

• Production function:

Yt “ AtK
α
t L

1´α,

where we normalize L “ 1.3

• Stochastic process for TPF:

lnpAt`1q “ ρ lnpAtq ` σεt`1,

where ε „ Np0, 1q.

• Resource constraint (w.l.o.g, for simplicity we assume full depreciation):

Ct `Kt`1 “ Yt.

2.3.1 First Step: Find the equations that characterize the equilibrium (opti-

mality, feasibility,...)

The system of equilibrium equations is given by

lnpAt`1q “ ρ lnpAtq ` σεt`1, (Eq.0)

which is already solved (in the sense that it is already log-linearized) and the equations

Ct `Kt`1 “ AtK
α
t (Eq.1)

C´γt “ βEt
“

C´γt`1αAt`1K
α´1
t`1

‰

(Eq.2)

3Note: leisure is not valued.

7



2.3.2 Second Step: Find the deterministic steady state

Note that (Eq.0) is an AR(1) process, and therefore we can rewrite it as

at “ ρat´1 ` σεt “ ρ pρat´2 ` σεt´1q ` σεt “ ¨ ¨ ¨ “
8
ÿ

j“0

σρjεt´j “ σ
8
ÿ

j“0

ρjLjεt.

where L is the lag operator. Then, to find the deterministic steady state level of A, we

set εt´j “ 0, @j obtaining

at “
8
ÿ

j“0

σρjεt´j “ 0, @t,

therefore

at “ ā “ 0 ùñ ā “ lnpĀq ùñ Ā “ eā “ e0
“ 1.

Given Ā “ 1, then Ȳ “ ĀK̄α
t “ K̄α

t and thus

C̄ ` K̄ “Ȳ “ K̄α, (1ss)

C̄´γ “ βE
“

C̄´γαK̄α´1
‰

ùñ K̄ “ pαβq
1

1´α . (2ss)

Note that substituting (2ss) in (1ss) we obtain

C̄ “ K̄α
´ K̄ “ pαβq

α
1´α ´ pαβq

1
1´α .

2.3.3 Third Step: Log-linearize the equilibrium equations

For this example, we will use the first method (i.e. we will write the equilibrium equations

in log deviations, doing that for each component of S and for each component of X, and

finally taking a first-order Taylor approximation of the equilibrium equations in each of

the variables s̃
piq
t , x̃

piq
t , z̃

piq
t around s̃

piq
t “ x̃

piq
t “ z̃

piq
t “ 0).

From (Eq.0) we can write

ln
`

Āeãt`1
˘

“ ρ ln
`

Āeãt
˘

` σεt`1,

which implies

ln
`

Ā
˘

` ãt`1 “ ρ
“

ln
`

Ā
˘

` ãt
‰

` σεt`1.

As Ā “ 1, then we have

ãt`1 “ ρãt ` σεt`1 (0``)

From (Eq.2) we can write

`

C̄ec̃t
˘´γ

“ βEt
„

`

C̄ec̃t`1
˘´γ

αĀeãt`1

´

K̄ek̃t`1

¯α´1


,
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where rewriting

C̄´γe´γc̃t “ βαĀC̄´γK̄α´1
looooooomooooooon

“C̄´γ by (2ss)

Et
”

e´γc̃t`1eãt`1epα´1qk̃t`1

ı

,

and which can finally be expressed as

e´γc̃t “ Et
”

e´γc̃t`1eãt`1epα´1qk̃t`1

ı

“ Et
”

e´γc̃t`1`ãt`1`pα´1qk̃t`1

ı

. (4)

On the one hand, the Taylor expansion of the LHS of (4) around c̃t “ 0 is given by

e´γc̃t – e´γ0
`

´

´ γe´γc̃t
ˇ

ˇ

c̃t“0

¯

rc̃t ´ 0s “ 1´ γc̃t, (5)

while, on the other hand, the Taylor expansion of the RHS of (4) around pc̃t`1, ãt`1, k̃t`1q “

p0, 0, 0q is given by

e´γc̃t`1`ãt`1`pα´1qk̃t`1 – e0
`

¨

˚

˝

´γe´γc̃t`1`ãt`1`pα´1qk̃t`1

e´γc̃t`1`ãt`1`pα´1qk̃t`1

pα ´ 1qe´γc̃t`1`ãt`1`pα´1qk̃t`1

˛

‹

‚

1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p0,0,0q

»

—

–

c̃t`1 ´ 0

ãt`1 ´ 0

k̃t`1 ´ 0

fi

ffi

fl

– 1´ γc̃t`1 ` ãt`1 ` pα ´ 1qk̃t`1.

(6)

Therefore we can rewrite (4) as

1´ γc̃t “ Et
”

1´ γc̃t`1 ` ãt`1 ´ p1´ αqk̃t`1

ı

,

where we can substitute (0``) obtaining

1´ γc̃t “ Et
”

1´ γc̃t`1 ` ρãt ` σεt ´ p1´ αqk̃t`1

ı

.

Finally, as Et rεts “ 0, then the only unknown at time t is c̃t`1, and thus we can rewrite

the previous equation as

´ γc̃t “ ρãt ´ p1´ αqk̃t`1 ´ γEt rc̃t`1s . (2``)

From (Eq.1) we can write

C̄ec̃t ` K̄ek̃t`1 “ Āeãt
´

K̄ek̃t
¯α

“ K̄αeãt`αk̃t , (7)

as Ā “ 1. Again we will do a Taylor expansion around the steady state. On the one hand,

the Taylor expansion of the LHS of (7) (i.e., ec̃t around c̃t “ 0) is almost the same as the

one given by (5), where we only have to get rid of the parameter γ. The same applies

to the second term of the left-hand-side. On the other hand, the Taylor expansion of the

RHS of (7) (i.e., eãt`αk̃t) around pãt, k̃tq “ p0, 0q is given by

eãt`αk̃t – e0
`

˜

eãt`αk̃t

αeãt`αk̃t

¸1ˇ
ˇ

ˇ

ˇ

ˇ

p0,0q

«

ãt ´ 0

k̃t ´ 0

ff

“ 1` ãt ` αk̃t, (8)
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and therefore we can write (7) as

C̄ p1` c̃tq ` K̄
´

1` k̃t`1

¯

“ K̄α
´

1` ãt ` αk̃t

¯

,

or, equivalently

C̄ ` K̄ ´ K̄α
loooooomoooooon

“0 by (1ss)

`C̄c̃t ` K̄k̃t`1 “ `K̄
αãt ` K̄

ααk̃t,

where dividing both sides by K̄α yields

C̄K̄´αc̃t ` K̄
1´αk̃t`1 “ ãt ` αk̃t. (1``)

To sum up, the log-linearized equations are

ãt`1 “ ρãt ` σεt`1, (0``)

C̄K̄´αc̃t ` K̄
1´αk̃t`1 “ ãt ` αk̃t, (1``)

´γc̃t “ ρãt ´ p1´ αqk̃t`1 ´ γEt rc̃t`1s . (2``)

In the spirit of the general model given by (A), we can write (1``) and (2``) in matrix

form as
«

C̄K̄´α ´α

´γ 0

ff«

c̃t

k̃t

ff

“

«

0 ´K̄1´α

´γ ´p1´ αq

ff

Et

#«

c̃t`1

k̃t`1

ff+

`

«

1

ρ

ff

ãt. (9)

2.3.4 Fourth Step: Solve for policy

We use the method of undetermined coefficients, i.e. we make the following guess:

c̃t “ ηckk̃t ` ηcaãt, (p1)

k̃t`1 “ ηkkk̃t ` ηkaãt, (p2)

which implies imposing that our controls are linear functions of the state variables of the

problem. In the notation of the general model, we guess
«

c̃t

k̃t`1

ff

“

«

ηck ηca

ηkk ηka

ff«

k̃t

ãt

ff

.

From now on we will look for the parameters ηck, ηca, ηkk, ηka.

First we will start with (1``). Substitute (p1) and (p2) in (1``) obtaining

C̄K̄´α
´

ηckk̃t ` ηcaãt

¯

` K̄1´α
´

ηkkk̃t ` ηkaãt

¯

“ ãt ` αk̃t,

collecting terms in k̃t and ãt yields

k̃t
`

C̄K̄´αηck ` K̄
1´αηkk ´ α

˘

` ãt
`

C̄K̄´αηca ` K̄
1´αηka ´ 1

˘

“ 0.
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This equation must hold for all pk̃t, ãtq. The only way in which this can happen is when

both brackets are equal to zero4. Then we must have

C̄K̄´αηck ` K̄
1´αηkk ´ α “ 0, (H1)

C̄K̄´αηca ` K̄
1´αηka ´ 1 “ 0. (H2)

Solving for ηck and ηca yields

ηck “
α ´ K̄1´αηkk

C̄K̄´α
, (ηck)

ηca “
1´ K̄1´αηka

C̄K̄´α
. (ηca)

Second, we continue with (2``). First, we start with the expectation term, where using

(p1) we obtain

Et rc̃t`1s “ Et
”

ηckk̃t`1 ` ηcaãt`1

ı

,

and substituting (p2) and (0``) yields

Et rc̃t`1s “ Et
”

ηck

´

ηkkk̃t ` ηkaãt

¯

` ηca pρãt ` σεtq
ı

“ Et
”

ηck

´

ηkkk̃t ` ηkaãt

¯ı

` Et rηca pρãt ` σεtqs

“ ηck

´

ηkkk̃t ` ηkaãt

¯

` ηcaρãt

“ ηckηkkk̃t ` ãt pηckηka ` ρηcaq , (10)

where the second equality follows from the properties of the expectation operator, the

third equality from the fact that in the first expectation, everything is known at time t

and the same happens in the second expectation, where we also use the fact that εt is zero

mean. Note that at this stage we obtain multiplicative terms in the η’s, which will lead to

non-linearities later on. Substituting now (10) in (2``) gives us the following expression

´ γc̃t “ ρãt ´ p1´ αqk̃t`1 ´ γ
”

ηckηkkk̃t ` ãt pηckηka ` ρηcaq
ı

,

where we substitute again (p1) and (p2) obtaining

´ γ
´

ηckk̃t ` ηcaãt

¯

“ ρãt ´ p1´ αq
”

ηkkk̃t ` ηkaãt

ı

´ γ
”

ηckηkkk̃t ` ãt pηckηka ` ρηcaq
ı

,

collecting the equal terms yields

k̃t r´γηck ` p1´ αqηkk ` γηckηkks ` ãt r´γηca ´ ρ` p1´ αqηka ` γ pηckηka ` ρηcaqs “ 0.

4Example: take k̃t “ 0 and ãt ‰ 0. Then, if the second bracket is different from zero, the condition

would not be satisfied.
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Again, this equation must hold for all k̃t, ãt. The only way for this to work is that both

brackets are equal to zero. Then we get two more equations since we must have

´γηck ` p1´ αqηkk ` γηckηkk “ 0, (H3)

´γηca ´ ρ` p1´ αqηka ` γηckηka ` γρηca “ 0, (H4)

The most important parameter is ηkk, thus we will solve for it. To this end, take (H3)

and divide by γ to obtain

´ ηck `
1´ α

γ
ηkk ` ηckηkk “ 0,

and now substitute (ηck) to obtain

´
α ´ K̄1´αηkk

C̄K̄´α
`

1´ α

γ
ηkk `

α ´ K̄1´αηkk
C̄K̄´α

ηkk “ 0.

After rearranging some terms we arrive to

αC̄´1K̄αηkk ´ C̄
´1K̄η2

kk ´ αC̄
´1K̄α

` C̄´1K̄ηkk `
1´ α

γ
ηkk “ 0,

where multiplying both sides by C̄ and further rearranging yields

´ K̄η2
kk ` ηkk

ˆ

αK̄α
` K̄ `

p1´ αqC̄

γ

˙

´ αK̄α
“ 0.

This is a quadratic form that can be solved as

ηkk “
´

´

αK̄α ` K̄ `
p1´αqC̄

γ

¯

˘

c

´

αK̄α ` K̄ `
p1´αqC̄

γ

¯2

´ 4
`

´K̄
˘ `

´αK̄α
˘

2
`

´K̄
˘

“

αK̄α ` K̄ `
p1´αqC̄

γ
¯

c

´

αK̄α ` K̄ `
p1´αqC̄

γ

¯2

´ 4αK̄1`α

2K̄
. (11)

In general, this quadratic form will have two real valued solutions (as long as we don’t

make any crazy calibration). Let’s call them ηkk,1 and ηkk,2. Without loss of generality we

define ηkk,1 ă ηkk,2, where ηkk,1 P p0, 1q and ηkk,2 ą 1 (this can be shown, not done here).

Does this mean that we will have two different solutions that take us to the steady state

of the model? Generally the answer is no. Both solutions will fulfil all the equations but

one of them, (ηkk,2), will violate the transversality condition. To see this rewrite (p2) as

k̃t “ ηkkk̃t´1 ` ηkaãt´1

“ ηkk

´

ηkkk̃t´2 ` ηkaãt´2

¯

` ηkaãt´1 “ η2
kkk̃t´2 ` ηkkηkaãt´2 ` ηkaãt´1

“ η2
kk

´

ηkkk̃t´3 ` ηkaãt´3

¯

` ηkkηkaãt´2 ` ηkaãt´1

“ ...

“ ηtkkk̃0 `

t
ÿ

j“1

ηj´1
kk ηkaãt´j

12



Therefore, if ηkk ą 1 the dynamics will be unstable (k̃t would explode) and we will

eventually violate the transversality condition given by

lim
TÑ8

E0

“

βTKT`1UC
‰

“ lim
TÑ8

E0

“

βTKT`1C
´γ
T

‰

.

2.4 Example 2: Leisure-labour decision

Consider the preferences between consumption Ct and leisure Lt given by

upCt, Ltq “
C1´γ
t

1´ γ
` η

Lξ`1
t

ξ ` 1
.

The optimality condition that characterizes the leisure-labour decision is then given by

uL
uC

“ η
Lξt
C´γt

“ Wt, (12)

where Wt is the real wage. For this example, we will use the second method of log-

linearization (i.e. take logs of the equilibrium conditions and expand in s̃
piq
t , x̃

piq
t , z̃

piq
t ).

First we compute the deterministic steady state of this problem, which is given by

ηL̄ξC̄γ
“ W̄,

which in logs can be expressed as

ln η ` ξ ln L̄` γ ln C̄ “ ln W̄. (13)

Second, taking logs in (12) yields

ln η ` ξ lnLt ` γ lnCt “ lnWt. (14)

Now, subtracting (14) from (13) yields

ξplnLt ´ ln L̄q ` γplnCt ´ ln C̄q “ lnWt ´ ln W̄,

where, following our usual notation we can write l̃t “ lnpLtq ´ lnpL̄q (the same applies to

Ct and Wt) obtaining

ξl̃t ` γc̃t “ w̃t.

References
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A Blanchard-Kahn Conditions

This section is based on (Blanchard and Kahn, 1980). Consider the system of equations
«

Xt`1

Et rPt`1s

ff

“ A

«

Xt

Pt

ff

`BZt, (15)

where A is an pn`mq ˆ pn`mq matrix, B is an pn`mq ˆ k matrix and

• Xt P Rn is a vector of predetermined variables at t (e.g. Kt in the RBC model),

• Pt P Rm is a vector of non-predetermined variables at t (e.g. Πt, Yt, . . .),

• Zt P Rk is a vector of exogenous shocks.

The difference between predetermined and non-predetermined variables is extremely im-

portant. Let Ωt be the information set at t, which includes past and current values of X,

P , Z. A predetermined variable is a function only of variables known at time t, that is of

variables in Ωt such that Xt`1 “ Et rXt`1|Ωt`1s whatever the realization of any variable

in Ωt`1. A non-predetermined variable Pt`1 can be a function of any variable in Ωt`1, so

that we can conclude that Pt`1 “ Et rPt`1|Ωt`1s only if the realization of all variables in

Ωt`1 are equal to their expectations conditional on Ωt.

We further assume that shocks don’t explode too fast, i.e. @t, DZ̄t P Rk and Dθt P R
such that

´ p1` iqθtZ̄t ď Et rZt`i|Ωts ď p1` iq
θtZ̄t @i “ 0, 1, 2, . . .

This condition rules out exponential growth of the expectation of Zt`i, held at time t.

Definition A.1 (Solution). A solution tXt, Ptu
8

t“1 is a stochastic sequence of variables

in Ωt which satisfies (15) for any realization of the shocks, @t and where expectations don’t

explode, i.e.

@t, D

«

X̄t

P̄t

ff

P Rn`m, and σt P R,

such that

´ p1` iqσt

«

X̄t

P̄t

ff

ď Et

«

Xt`i

Pt`i

ˇ

ˇ

ˇ

ˇ

ˇ

Ωt

ff

ď p1` iqσt

«

X̄t

P̄t

ff

, @i “ 0, 1, 2, . . . (16)

Proposition A.1. Let m̄ be the number of eigenvalues of A which lie outside the unit

circle (i.e. |λi| ą 1). Then

• (Blanchard and Kahn, 1980, Proposition 1) If m̄ “ m, i.e. if the number of eigen-

values of A outside the unit circle is equal to the number of non-predetermined

variables, then there exists a unique solution.
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• (Blanchard and Kahn, 1980, Proposition 2) If m̄ ą m, i.e. if the number of eigen-

values outside the unit circle exceeds the number of non-predetermined variables,

there is no solution satisfying both (15) and the non-explosion condition.

• (Blanchard and Kahn, 1980, Proposition 3) If m̄ ă m, i.e. if the number of eigen-

values outside the unit circle is less than the number of non-predetermined variables,

there is an infinity of solutions (i.e., the solution is indeterminate).

Example A.1. Suppose the following equilibrium equation for inflation:

πt “ ρEt rπt`1s ` εt, (17)

where we assume that εt is an i.i.d. error with zero mean. Furthermore, assume that

ρ ě 0. Let us rewrite it as

Et rπt`1s “
1

ρ
πt ´

1

ρ
εt.

Guess that the solution is of the form

πt “ C0ρ
´t
` εt, @C0 P R, (18)

where C0 P R is an arbitrary number. Substituting (18) in (17) we obtain

πt “ ρEt
“

C0ρ
´pt`1q

` εt`1

‰

` εt

“ ρEt
“

C0ρ
´pt`1q

‰

` Et rεt`1s ` εt

“ ρC0ρ
´pt`1q

` εt

“ C0ρ
´t
` εt.

Therefore, the solution given by (18) is valid @ρ ě 0 and @C0 P R. To evaluate the

solution of this model for different values of these parameters, we apply Proposition A.1.

In this example, πt is a non-predetermined variable, thus m “ 1 “ m̄. Furthermore, the

matrix A and its only eigenvalue λ is given by the scalar

A “

„

1

ρ



ùñ λ “
1

ρ
.

Therefore we have that

• If |ρ| ă 1, then λ ą 1 is strictly outside the unit circle and then (17) has a unique

solution. In particular, the unique solution that satisfies the non explosive condition

(16) is C0 “ 0, and therefore πt “ εt.
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E0rπts

t

C0 “ 1

C0 “ ´1

C0 “ 0

Figure 1: ρ P p0, 1q. There is a unique stable solution, but 8 unstable solutions. Note that BK rules

out hyper-inflationary/deflationary equilibria here! But these may be important equilibria of our model,

so this is a word of caution with applying BK blindly (see also Cochrane’s critique of the New-Keynesian

model).

• If |ρ| ă 1, then λ ă 1 is inside the unit circle, and then (17) has multiple solutions5.

In particular, we have an infinite number of solutions (one for each C0) that satisfy

the non explosive condition (16).

E0rπts

t

C0 “ 1

C0 “ ´1

C0 “ 0

Figure 2: |ρ| ą 1. There are 8 stable solutions, i.e., the solution is indeterminate.

Example A.2 (RBC model). Define

A0 ”

«

´α C̄K̄´α

0 ´γ

ff

, A1 ”

«

´K̄1´α 0

´p1´ αq ´γ

ff

, and B0 ”

«

ρ

1

ff

5We call this situation multiplicity of equilibria or indeterminacy.
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Then we can rewrite (9) as6

«

k̃t`1

Etrc̃t`1s

ff

“ A

«

k̃t

c̃t

ff

`Bat,

where

A “ A´1
1 A0, and B “ A´1

1 B0.

By Proposition A.1, m̄ “ 1, thus this system will have a unique (stable) solution as long

as A has exactly one eigenvalue strictly outside the unit circle.

6Note that the shock Zt in (Blanchard and Kahn, 1980) need not be i.i.d.!
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