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Abstract

These are notes that I took from the course Macroeconomics II at UC3M, taught

by Matthias Kredler during the Spring semester of 2016. Typos and errors are

possible, and are my sole responsibility and not that of the instructor.
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1 (Deterministic) Continuous-Time Dynamic Program-

ming

1.1 Consumption-Savings Problem

Consider the consumption-savings problem in continuous time with a deterministic hori-

zon t P r0, T s given by

max
tctu

T
t“0

ż T

0

e´ρtupctqdt` e
´ρT V̄T paT q,

s.t. 9at

ˆ

”
da

dt

˙

“ rat ` w ´ ct, @t, (1)

at ě 0, @t,

a0 ě 0 given, aT ě 0.

where V̄T p¨q is an exogenously-given final-payoff function such that V̄ 1T ą 0 and V̄ 2T ď 0.

How is (1) obtained? For a short ∆t, we can write

at`∆t “ pat ` w∆t´ ct∆tqp1` r∆tq

“ at ` rat∆t` w∆t´ ct∆t` pwr ´ rctqp∆tq
2,

where rat∆t is the return earned from savings at during the little period ∆t; w∆t are

the wage earnings over ∆t; ct∆t are consumption expenditures during ∆t and finally

pwr ´ ctrqp∆tq
2 are second order terms.1 Re-arranging the previous equation we obtain

at`∆t ´ at “ rat∆t` w∆t´ ct∆t` pwr ´ rctqp∆tq
2,

dividing both sides by ∆t,

at`∆t ´ at “ rat∆t` w∆t´ ct∆t` pwr ´ rctqp∆tq
2

at`∆t ´ at
∆t

“ rat ` w ´ ct ` pwr ´ ctrq∆t,

and finally taking limits as ∆tÑ 0 yields

9at “ rat ` w ´ ct.

1.1.1 Bellman’s principle

We are going to do a kind of ‘backwards induction’ to obtain the Hamilton-Jacobi-Bellman

equation. To do this, let us assume that we know V pt̄, aq, for all a ě 0 at some t̄. How

1Note that at is a stock, while w, ct and rat are flows/rates.
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can we obtain V pt̄´∆t, aq? Bellman’s principle state that

V pt̄´∆t, aq “max
cě0

$

’

’

’

&

’

’

’

%

upcq∆t
loomoon

‘Today’
rt̄´∆t, t̄´∆t`∆ts

` e´ρ∆tV pt̄, a1q
loooooomoooooon

‘Continuation value’

,

/

/

/

.

/

/

/

-

, (BP)

s.t. a1 “ a` rra` w ´ cs∆t` o p∆tq,

where o p∆tq are terms such that lim∆tÑ0
op∆tq

∆t
“ 0 (i.e. of second order and higher).

Disregarding o p∆tq, we can rewrite (BP) substituting a1 as

V pt̄´∆t, aq “ max
cě0

 

upcq∆t` e´ρ∆tV pt̄, a` rra` w ´ cs∆tq
(

. (2)

Let us define the continuation value as

gp∆tq ” e´ρ∆tV

¨

˝t̄, a`

“ 9a
hkkkkkkikkkkkkj

rra` w ´ cs∆t

˛

‚. (3)

The first-order Taylor expansion of (3) around the point ∆t “ 0 is given by

gp∆tq – gp0q ` g1p0q∆t. (4)

To obtain g1p∆tq we take the derivative of (3) with respect to ∆t, obtaining2

g1p∆tq “ ´ρe´ρ∆tV pt̄, a` 9a∆tq ` e´ρ∆tVa pt̄, a` 9a∆tq 9a.

Then we have that g1p0q “ ´ρV pt̄, aq ` 9aVa pt̄, aq. Since gp0q “ V pt̄, aq, then substituting

in (3), the first-order Taylor expansion of (3) around the point ∆t “ 0 is given by

gp∆tq – V pt̄, aq ` p´ρV pt̄, aq ` 9aVa pt̄, aqq∆t. (5)

Going back to (2) we can substitute (5) obtaining

V pt̄´∆t, aq “ max
cě0

tupcq∆t` V pt̄, aq ´ ρV pt̄, aq∆t` 9aVa pt̄, aq∆tu ,

where substituting again 9a “ ra` w ´ c and rewriting we obtain

V pt̄´∆t, aq ´ V pt̄, aq “ ´ρV pt̄, aq∆t`max
cě0

tupcq∆t` pra` w ´ cqVa pt̄, aq∆tu .

Dividing both sides by ∆t yields

´
V pt̄, aq ´ V pt̄´∆t, aq

∆t
“ ´ρV pt̄, aq `max

c
tupcq ` pra` w ´ cqVa pt̄, aqu ,

2Note that the Value function is defined as V pt, aq, thus Vapt, aq denotes the derivative w.r.t the second

argument of this function. In the second part of the derivative we are using the chain rule
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and finally, taking limits as ∆t Ñ 0, and substituting t̄ for t since the choice of t̄ was

arbitrary yields

´ Vtpt, aq ` ρV pt, aq “ max
cě0

tupcq ` pra` w ´ cqVa pt, aqu , (HJB)

which is called the Hamilton-Jacobi-Bellman (HJB) equation. The unknown in this partial

differential equation is V pt, aq, where V : r0, T s ˆ r0,8q Ñ R, with boundary (or final)

condition V pT, aq “ V̄T paq given.

1.1.2 Euler equation

As usual, we are interested in obtaining the Euler equation. Taking the first derivative

inside the max operator of (HJB) w.r.t c yields ucpcq ´ Vapt, aq “ 0, where we assume

that the solution will be interior, and thus the optimal policy c˚pt, aq must solve

uc pc
˚
pt, aqq “ Vapt, aq. (FOC)

This tells us that to be optimizing, marginal cost of saving must be equal to marginal

benefit. To obtain the Euler equation, we have to differentiate (HJB) w.r.t a (the state

variable), and we also have to use (FOC). Note that when considering the Euler equation

we always think about optimality, therefore rewriting (HJB) in the optimum we have

´ Vtpt, aq ` ρV pt, aq “ u pc˚pt, aqq ` pra` w ´ c˚pt, aqqVa pt, aq .

Assumption. All the elements on (HJB) are differentiable.

Under Assumption 1.1.2, the derivative of the previous expression w.r.t. a is

´Vtapt, aq ` ρVa pt, aq “uc pc
˚
pt, aqq

dc˚pt, aq

da
´
dc˚pt, aq

da
Va pt, aq ´ ¨ ¨ ¨

¨ ¨ ¨ ´ c˚pt, aqVaa pt, aq ` wVaa pt, aq ` rVa pt, aq ` arVaa pt, aq ,

where rewriting yields

´Vtapt, aq ` ρVa pt, aq “
dc˚pt, aq

da

»

—

–

uc pc
˚
pt, aqq ´ Va pt, aq

loooooooooooomoooooooooooon

“0 by (FOC)

fi

ffi

fl

` ¨ ¨ ¨

¨ ¨ ¨ `

»

–ra` w ´ c˚pt, aq
looooooooomooooooooon

“ 9a

fi

flVaa pt, aq ` rVa pt, aq ,

thus the previous expression simplifies to

´ Vtapt, aq ` ρVa pt, aq “ 9aVaa pt, aq ` rVa pt, aq ,
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and rewriting we obtain

Vtapt, aq ` 9aVaa pt, aq “ pρ´ rqVa pt, aq . (6)

Now, define an optimal path a˚ptq for the state variable a as

• a˚p0q “ a0,

• 9a˚ptq “ r 9a˚ptq ` w ´ c˚pt, a˚ptqq, @t.

Taking the total derivative of the value function along the optimal path 3 we obtain

B

Bt
rVapt, a

˚
ptqqs “ Vatpt, a

˚
ptqq ` Vaapt, a

˚
ptqq 9a˚ptq. (7)

Now, combining (6) with (7) we obtain

Vatpt, a
˚ptqq ` Vaapt, a

˚ptqq 9a˚ptq

Va pt, a˚ptqq
“

B

Bt
rVapt, a

˚ptqqs

Va pt, a˚ptqq
“ ρ´ r “

B

Bt
rucpc

˚
pt, a˚ptqqqs

ucpc
˚
pt, a˚ptqqq

looooooooooooooooomooooooooooooooooon

Euler equation

, (EE)

where the last equality comes from (FOC). This is the Euler equation, which tells is that

marginal utility grows at rate ρ´ r.

3Intuition: going along the optimal path of a value function in the space pt, aq should always give the

left-hand-side of the Euler equation
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2 (Stochastic) Continuous-Time Dynamic Program-

ming

2.1 Environment

Consider that wt P tw̄1, w̄2, . . . , w̄Nu follows a Poisson process with

• Transition rates (Transition hazards): ηij; i, j P t1, ..., Nu. Interpretation:

Prpjump to wj within rt`∆ts |wt “ wiq “ ηij∆t` op∆tq.

• Note: ηij might be ą 1!

• Interpretation: jump, on average, every
1

ηij
time units.

• Prp2 jumps: i ÝÑ j ÝÑ k in rt; t`∆tsq ă ηij∆tηjk∆t “ op∆tq

2.2 Consumption-Savings Problem

Suppose wt P tw̄1, w̄2u and η12 “ η21 “ η.

2.2.1 Bellman’s principle

Suppose first that the wage at some t̄´∆t is known and is w̄1, then we can write

V pt̄´∆t, a, w̄1q “ max
cě0

$

’

’

&

’

’

%

upcq∆t` e´ρ∆t

“ErV pt̄,a1,w1q|wt̄´∆t“w̄1s
hkkkkkkkkkkikkkkkkkkkkj

Et̄´∆t rV pt̄, a
1, w1qs

,

/

/

.

/

/

-

,

s.t. a1 “ a` rra` w̄1 ´ cs
loooooomoooooon

9a

∆t` o p∆tq
loomoon

2nd

order terms

, (BC)

w1 “ wt̄ stochastic (exogenous).

Working on the expectation we can write the previous equation as

V pt̄´∆t, a, w̄1q “ max
cě0

$

’

’

’

&

’

’

’

%

upcq∆t` e´ρ∆t

»

—

—

—

–

p1´ η∆tqV pt̄, a1, w̄1q
loooooooooooomoooooooooooon

Probability w doesn’t change

` ¨ ¨ ¨

¨ ¨ ¨ ` η∆tV pt̄, a1, w̄2q
loooooooomoooooooon

Probability w changes

`op∆tq

fi

ffi

ffi

ffi

fl

,

/

/

/

.

/

/

/

-

(BP)

Disregarding o p∆tq, we can define

gp∆tq ” e´ρ∆t
rp1´ η∆tqV pt̄, a1, w̄1q ` η∆tV pt̄, a1, w̄2qs ,
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where substituting a1 from (BC) yields

gp∆tq “ e´ρ∆t
rp1´ η∆tqV pt̄, a` 9a∆t, w̄1q ` η∆tV pt̄, a` 9a∆t, w̄2qs . (8)

As in the deterministic case, the Taylor expansion of gp∆tq around ∆t “ 0 is given by

gp∆tq – gp0q ` g1p0q∆t, (9)

where, on the one hand, the term gp0q is obtained by setting ∆t “ 0 in (8), which gives

gp0q “ V pt̄, a, w̄1q. (10)

On the other hand we have

g1p∆tq “ ´ ρ

“gp∆tq
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

e´ρ∆t
”

p1´ η∆tqV pt̄, a` 9a∆t, w̄1q ` η∆tV pt̄, a` 9a∆t, w̄2q

ı

` ¨ ¨ ¨

¨ ¨ ¨ ` e´ρ∆t
”

´ ηV pt̄, a` 9a∆t, w̄1q ` p1´ η∆tqVapt̄, a` 9a∆t, w̄1q 9a` ¨ ¨ ¨ (11)

¨ ¨ ¨ ` ηV pt̄, a` 9a∆t, w̄2q ` η∆tVapt̄, a` 9a∆t, w̄2q 9a
ı

.

Evaluating this expression at ∆t “ 0 yields

g1p0q “ ´ρe´0gp0q ` e´0
r´ηV pt̄, a, w̄1q ´ p1´ 0qVapt̄, a, w̄1q 9a` ηV pt̄, a, w̄2q ` 0s

“ ´ρV pt̄, a, w̄1q ` Vapt̄, a, w̄1q 9a` η rV pt̄, a, w̄2q ´ V pt̄, a, w̄1qs . (12)

Here we can see that the change in the assets when salary changes from w̄1 to w̄2 is of

second order, and thus we obtain a 0 when evaluating at ∆t.4 Finally, combining (10)

and (12) yields5

gp∆tq – V pt̄, a, w̄1q ` t´ρV pt̄, a, w̄1q ` Vapt̄, a, w̄1q 9a` η rV pt̄, a, w̄2q ´ V pt̄, a, w̄1qsu∆t

– V pt̄, a, w̄1q ´ ρV pt̄, a, w̄1q∆t
looooooomooooooon

Discounting

` η rV pt̄, a, w̄2q ´ V pt̄, a, w̄1qs∆t
loooooooooooooooooomoooooooooooooooooon

Wage risk

` ¨ ¨ ¨

¨ ¨ ¨ ` 9aVapt̄, a, w̄1q∆t
loooooooomoooooooon

Benefit from saving

. (13)

4From (11), this change is given by the expression coming from

´ η∆tVapt̄, a` 9a∆t, w̄1q 9a` η∆tVapt̄, a` 9a∆t, w̄2q 9a,

which can be re-arranged as

η∆t 9a rVapt̄, a` 9a∆t, w̄2q ´ Vapt̄, a` 9a∆t, w̄1qs .

5Note: The effects of saving in the other wage state, w̄2, are of second order, that is, only Vap¨, w̄1q

matters in the limit.
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Once we have found the Taylor approximation we can go back to (BP), where substi-

tuting (13) yields

V pt̄´∆t, a, w̄1q “ max
cě0

#

upcq∆t` V pt̄, a, w̄1q ´ ρV pt̄, a, w̄1q∆t` ¨ ¨ ¨

¨ ¨ ¨ ` η rV pt̄, a, w̄2q ´ V pt̄, a, w̄1qs∆t` 9aVapt̄, a, w̄1q∆t

+

,

where further rewriting and substituting 9a from the budget constraint (BC) yields

V pt̄´∆t, a, w̄1q ´ V pt̄, a, w̄1q ` ρV pt̄, a, w̄1q∆t “ ¨ ¨ ¨

¨ ¨ ¨ “ η rV pt̄, a, w̄2q ´ V pt̄, a, w̄1qs∆t`max
cě0

tupcq∆t` rra` w̄1 ´ csVapt̄, a, w̄1q∆tu .

Dividing by ∆t we obtain

V pt̄´∆t, a, w̄1q ´ V pt̄, a, w̄1q

∆t
` ρV pt̄, a, w̄1q “ ¨ ¨ ¨

¨ ¨ ¨ “ η rV pt̄, a, w̄2q ´ V pt̄, a, w̄1qs `max
cě0

tupcq ` rra` w̄1 ´ csVapt̄, a, w̄1qu ,

and taking limits when ∆tÑ 0 in the previous expression gives

lim
∆tÑ0

"

V pt̄´∆t, a, w̄1q ´ V pt̄, a, w̄1q

∆t
` ρV pt̄, a, w̄1q

*

“ ¨ ¨ ¨

¨ ¨ ¨ “ lim
∆tÑ0

"

η rV pt̄, a, w̄2q ´ V pt̄, a, w̄1qs `max
cě0

tupcq ` rra` w̄1 ´ csVapt̄, a, w̄1qu

*

,

where, by the definition of the derivative,

lim
∆tÑ0

V pt̄´∆t, a, w̄1q ´ V pt̄, a, w̄1q

∆t
“ ´

V pt̄, a, w̄1q ´ V pt̄´∆t, a, w̄1q

∆t

“ ´Vtpt̄, a, w̄1q,

and as t̄ was arbitrary, rewriting one more time we finally obtain

´Vtpt, a, w̄1q ` ρV pt, a, w̄1q “η rV pt, a, w̄2q ´ V pt, a, w̄1qs ` ¨ ¨ ¨

¨ ¨ ¨ `max
cě0

tupcq ` rra` w̄1 ´ csVapt, a, w̄1qu , (HJB1)

which is our desired Hamilton-Jacobi-Bellman (HJB) equation.

Note that now we have another symmetric Hamilton-Jacobi-Bellman (HJB) equation6

for w̄2 (i.e. V p¨, w̄2q), so switching w̄1 and w̄2 we get

´Vtpt, a, w̄2q ` ρV pt, a, w̄2q “ η rV pt, a, w̄1q ´ V pt, a, w̄2qs ` ¨ ¨ ¨

¨ ¨ ¨ `max
cě0

tupcq ` rra` w̄2 ´ csVapt, a, w̄2qu . (HJB2)

Both equations (HJB1) and (HJB2) form a system of two partial differential equations

that allow us to solve for V pt, a, w̄1q and V pt, a, w̄2q, given terminal conditions V pT, a, w̄1q

and V pT, a, w̄2q.

6Since w̄1 was arbitrarily chosen, in principle we can have as many (HJB) as different states of nature

we face.
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2.2.2 Stationary Case

Let T “ 8. Then the value function V pt, a, wq becomes time-independent. In this case

we get the following Hamilton-Jacobi-Bellman (HJB) Equation

ρV pa, wq “ η rV pa, w̃q ´ V pa, wqs `max
cě0

tupcq ` rra` w ´ csVapa, wqu , (HJBS)

where w̃ ‰ w denotes the other earnings level. This is the Hamilton-Jacobi-Bellman

(HJB) Equation for the stationary case.

What can we say about the solution of this PDE? As usual, the first-order condition

of (HJBS) for the optimal consumption rule c˚pa, wq is

u1pc˚pa, wqq “ Vapa, wq. (FOC)

The stochastic process for wealth under the optimal savings rule is

9a˚t “ ra˚t ` wt ´ c
˚
pa˚t , wtq. (14)

We want to obtain the Euler equation, restricting out attention to the case at ą 0 in which

the no-borrowing limit (at ě ā “ 0q is not binding. To do so, we take the derivative of

(HJBS) with respect to the state variable a. To this end, we first get rid of the max

operator by evaluating (HJBS) at the optimum given by (FOC), obtaining

ρV pa˚, wq “ η rV pa˚, w̃q ´ V pa˚, wqs ` upc˚pa˚, wqq ` rra˚ ` w ´ c˚pa˚, wqsVapa
˚, wq,

so that the derivative is

ρVapa
˚, wq “η rVapa

˚, w̃q ´ Vapa
˚, wqs `

Bupc˚pa˚, wqq

Ba˚
` ¨ ¨ ¨

¨ ¨ ¨ `

„

r ´
Bc˚pa˚, wq

Ba˚



Vapa
˚, wq ` rra˚ ` w ´ c˚pa˚, wqsVaapa, wq. (15)

Applying the chain rule, we have

Bupc˚pa˚, wqq

Ba˚
“

dupc˚pa˚, wq

dc˚pa˚, wq

Bc˚pa˚, wq

Ba˚
“ u1pc˚pa˚, wq

Bc˚pa˚, wq

Ba˚
,

and substituting this expression in the previous equation and re-arranging we obtain

ρVapa
˚, wq “η rVapa

˚, w̃q ´ Vapa
˚, wqs `

Bc˚pa˚, wq

Ba˚

“0 by (FOC)
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

ru1pc˚pa˚, wqq ´ Vapa
˚, wqs` ¨ ¨ ¨

¨ ¨ ¨ ` rVapa
˚, wq ` rra˚ ` w ´ c˚pa˚, wqsVaapa

˚, wq,

and finally we arrive to

ρVapa
˚, wq “ η rVapa

˚, w̃q ´ Vapa
˚, wqs ` rVapa

˚, wq ` rra˚ ` w ´ c˚pa˚, wqsVaapa
˚, wq.

(16)

9



Note that now we are in a stochastic framework, and so we can’t follow the charac-

teristic optimal path like we did in the deterministic case, because now we can’t know in

which path we are due to the uncertain environment. To be able to solve this, we will

first take a look at the Euler equation in a stochastic framework in discrete time. Why

is this interesting? In principle, continuous time and discrete time only make a difference

in the mathematical background we use, but the underlying economic theory is the same

and thus we should arrive at the same conclusions. The Euler equation in a stochastic

framework in discrete time is given by

u1pctq “ βRE ru1pct`1qs ,

or equally
E ru1pct`1qs

u1pctq
“

1

βR
.

The interpretation is as usual, the expected growth rate of marginal utility is equal to

pβRq´1. The crucial question we have to answer now is what is the growth rate of

marginal utility in continuous time. To address this question, we first need to introduce

the following definition.

Definition 2.1 (Infinitesimal generator). We define the infinitesimal generator A of

an arbitrary function fp¨q of the state as the following expected (total) time derivative

Afpa˚t , wtq “ lim
∆tÑ0

Et
“

fpa˚t`∆t, wt`∆tq
‰

´ fpa˚t , wtq

∆t
, (17)

where assets a˚t follow the law of motion specified by the optimal savings rule (14) and wt

follows its exogenous law of motion.

In our stochastic framework, the expectation term of (17) can be written as

Et
“

f
`

a˚t`∆t, wt`∆t

˘‰

“Et rf pa1˚, w1qs

– p1´ η∆tq f pa˚t ` 9a˚∆t, wtq ` ¨ ¨ ¨

¨ ¨ ¨ ` η∆tf pa˚t ` 9a˚∆t, w̃tq ` op∆tq. (18)

The first-order Taylor approximations of fpat ` 9a∆t, wtq and fpat ` 9a∆t, w̃tq around the

point ∆t “ 0 are given by

fpa˚t ` 9a˚∆t, ωq – fpa˚t , ωq ` 9a˚fa pa
˚
t ` 9a˚∆t, ωq|∆t“0 r∆t´ 0s

“ fpa˚t , ωq ` 9a˚∆tfa pa
˚
t , ωq , (19)

10



where ω “ twt, w̃tu. Substituting (19) in (18) yields

Et
“

f
`

a˚t`∆t, wt`∆t

˘‰

– p1´ η∆tq rf pa˚t , wtq ` 9a˚∆tfa pa
˚
t , wtqs ` ¨ ¨ ¨

¨ ¨ ¨ ` η∆t rf pa˚t , w̃tq ` 9a˚∆tfa pa
˚
t , w̃tqs

– f pa˚t , wtq ´ η∆tf pa˚t , wtq ` 9a˚∆tfa pa
˚
t , wtq ´ ¨ ¨ ¨

¨ ¨ ¨ ´ η 9a˚p∆tq2fa pa
˚
t , wtq

loooooooooomoooooooooon

op∆tq

`η∆tf pa˚t , w̃tq ` η 9a˚p∆tq2fa pa
˚
t , w̃tq

loooooooooomoooooooooon

op∆tq

.

Disregarding the second order terms we obtain

Et
“

f
`

a˚t`∆t, wt`∆t

˘‰

– f pa˚t , wtq´η∆tf pa˚t , wtq` 9a˚∆tfa pa
˚
t , wtq`η∆tf pa˚t , w̃tq , (20)

and now we can substitute (20) in (17) to obtain

Afpa, wq “ lim
∆tÑ0

f pa˚t , wtq ´ η∆tf pa˚t , wtq ` 9a˚∆tfa pa
˚
t , wtq ` η∆tf pa˚t , w̃tq ´ fpa

˚
t , wtq

∆t

“ ´ηf pa˚t , wtq ` 9a˚fa pa
˚
t , wtq ` ηf pa

˚
t , w̃tq ,

where re-arranging yields

Afpa˚t , wtq “ 9a˚t fa pa
˚
t , wtq

loooooomoooooon

Drift in a

` η rf pa˚t , w̃tq ´ f pa
˚
t , wtqs

loooooooooooooomoooooooooooooon

Wage risk (hazard rate)

. (21)

Remark. Formally, A is an operator that maps functions fpa, wq that are continuously

differentiable in a into functions gpa, wq that are continuous in a. In stochastic processes,

the infinitesimal generator is an object that is uniquely associated to a stochastic pro-

cess (here: the process ta˚t , wtu
8
t“0) that tells us about the properties of the process. In

mathematical terms, we could write the operator as

A “ 9a˚
B

Ba
` η∆w,

where we define the operator ∆w as the ‘discrete derivative in dimension w’, ∆wfp¨, wq ”

fp¨, w̃q ´ fp¨, wq. This expresses how the operator A acts on functions f (and transforms

them into functions g) and has a very clear intuition (expected time change!). In settings

with shocks of Brownian-Motion type to continuous variables (here: a) would show up as

second-derivative terms, faapa, wq, in the infinitesimal generator.

Back to (16) note that Vaa “ pVaqa, and thus re-arranging (16) we obtain

pρ´ rqVapa
˚, wq “ η rVapa

˚, w̃q ´ Vapa
˚, wqs ` rra˚ ` w ´ cs pVaqapa

˚, wq.

If we define f ” Va and bearing in mind that rra` w ´ cs “ 9a, then using (21) we can

rewrite the previous expression as

pρ´ rqVapa
˚, wq “ AVapa˚, wq,

11



and thus we finally obtain
AVapa˚, wq
Vapa˚, wq
looooomooooon

Expected %
growth rate of Va

“ ρ´ r,

or using (FOC) again
Au1pc˚pa˚, wqq
u1pc˚pa˚, wqq

“ ρ´ r.

12



3 Pontryagin’s Maximum Principle (PMP)

max
tutu

T
t“0

ż T

0

Lpxt, ut, tqdt`MpxT q

s.t. 9xt “ fpxt, ut, tq,

x0 given, xt P Rn.

The link between this generic notation and the deterministic consumption-savings problem

is as follows:

xt“̂at, ut“̂ct, Lpxt, ut, tq“̂e
´ρtupctq, M“̂VT , fpxt, ut, tq“̂ra` w ´ c, λ“̂Va.

We define the Hamiltonian as

Hpxt, ut, t, λtq “ λ1t
1ˆn

fpxt, ut, tq
nˆ1

` Lpxt, ut, tq,

where λt P Rn (has the same dimensionality as the state) and we will call it co-state

variable. Pontryagin’s Maximum Principle tells us that that the optimal control u˚ with

associated trajectories x˚ and λ˚ satisfies the following equations:

u˚t “ arg max
u

Hpx˚t , ut, t, λ
˚
t q

“̂

¨

˚

˚

˚

˚

˚

˚

˝

max
c
tupcq ` 9aVau

looooooooomooooooooon

right-hand-side of (HJB)

˛

‹

‹

‹

‹

‹

‹

‚

, @t,

´ 9λ˚t “ Hxpx
˚
t , u

˚
t , t, λ

˚
t q, @t, pco-state equation “̂(EE)q

λ˚T “MxpxT q.

To be able to apply Pontryagin’s Maximum Principle to the savings problem, we first

write the Hamiltonian associated to this problem:

Hpa, c, t;Vaq “ e´ρtupcq ` Va pra` w ´ cq ,

where Va“̂λt, e
´ρtupctq“̂Lpxt, ut, tq and pra ` w ´ cq“̂fpxt, ut, tq. Then, applying Pon-

tryagin’s Maximum principle we have that the first derivative w.r.t to the state variable

a yields

´ 9λ˚t “ Hapa, c, t;Vaq “ Var ðñ ´ 9λ˚t “ rλ˚t p” ´ 9V ˚a “ rV ˚a q. (22)

Accordingly, the first derivative w.r.t to the control variable c yields

Hcpa, c, t;Vaq “ 0 ðñ e´ρtu1pcq´λt “ 0 ðñ e´ρtu1pcq “ λt p” e´ρtucpcq “ Vaq. (23)

13



Taking the derivative w.r.t time in the previous equation yields

´ ρe´ρtucpctq ` e
´ρt d

dt
rucpc

˚
qs “ 9λt ðñ e´ρt

ˆ

d

dt
rucpc

˚
qs ´ ρucpctq

˙

“ 9λt. (24)

Combining (22) - (24) we obtain

´ e´ρt
ˆ

d

dt
rucpc

˚
qs ´ ρucpctq

˙

“ re´ρtucpcq,

which simplifies to

pρ´ rqucpcq “
d

dt
rucpc

˚
qs ,

and can be rewritten as
d

dt
rucpc

˚
qs

ucpc
˚
q

“ ρ´ r, (25)

which gives us the same Euler equation as in (EE).

Example 3.1 (Log utility). Consider upcq “ lnpcq. To solve for the optimal path of

consumption as a function of time, c˚,pptq, from (25) we have

d

dt

ˆ

1

c˚,pptq

˙

“ pρ´ rq
1

c˚,pptq
,

that yields

´

ˆ

1

pc˚,pptqq2

˙

9c˚,pptq “ pρ´ rq
1

c˚,pptq
.

Simplifying this expression gives

´ 9c˚,pptq “ pρ´ rqc˚,pptq,

which characterizes the growth rate of consumption.
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