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Abstract

These are notes that I took from the course Macroeconomics II at UC3M, taught

by Matthias Kredler during the Spring semester of 2016. Typos and errors are

possible, and are my sole responsibility and not that of the instructor.
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1 General Framework

In this section we provide an extension of the previous setting. Now we are going to assume

that the agent does not now exactly the next period values. However, she will have an

expectation over it depending on a shock, i.e., she will be able to forecast tomorrow’s

values.

1.1 Notation

Consider a general stochastic environment with infinite horizon. There is a shock vector

zt P RNz , (e.g. Nz “ 1, thus zt P tz̄1, z̄2, . . . , z̄Nu where each z̄i P R). We typically assume

that the transition from one period to the next one is given by

• An i.i.d. process, i .e., Prpzt`1 | zt, zt´1, . . . q “ Prpzt`1q.
1

• A first-order Markov process, i .e., Prpzt`1 | zt, zt´1, . . . q “ Prpzt`1 | ztq.
2

Henceforth, we assume zt follows the latter process. Besides, suppose we are given a

vector yt P RNy which informs us about the feasible set for a control ut P RNu and the

return in period t. Specifically, we are given a feasibility correspondence Γ:

ut P Γpyt, ztq, Γ : RNy`Nz Ñ RNu ,

and a return function, F :

F pyt, zt;utq, F : RNy`Nz`Nu Ñ R.

1These processes are particularly useful as they allow us to reduce the dimensionality of the state

vector. In particular, we will not need to condition the expectation of the next period value function on

the current shock since it does not contain any useful information related to tomorrow’s shock.
2First-order Markov processes are also useful as they tell us that all we need to know to be able to

forecast tomorrow’s shock is the shock observed today.
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Finally, suppose that we are given a law of motion for y, i.e. a function h that tells us

which value y takes tomorrow:

yt`1 “ hput, zt;ut, zt`1q, h : RNy`Nz`Nu`Nz Ñ RNy .

Given this environment we can always write down a valid functional equations for a value

function V p¨q that reads:

V py, zq “ max
uPΓpy,zq

"

F py, z;uq ` β

ż

V pz1, hpy, z;u, z1qqfpz1|zqdz1
*

. (1)

However, we will see that this formulation may be wasteful. It may be that we can

condense the state of the economy into a vectorx of lower dimensionality that py, zq. This

turns out to be of huge value for both analytical and computational purposes.

Definition 1.1 (State). The state of the economy is the smallest set of variables, a

vector x P RNx, Nx ď Ny `Nz, that allows us to determine all of the following:

1. the feasible set, i.e. Γ̃ “ Γpy, zq for some correspondence Γ̃ : R : Nx Ñ RNu,

2. the return function given a control vector u, i.e. F̃ px;uq “ F py, z;uq, for some

function F : RNx`Nu Ñ R,

3. the law of motion for y given control vector u and shock vector z1, i.e. y1 “ h̃px;u, z1q

for some function h̃ : RNx`Nu`Nz ñ RNx,

4. and the conditional expectation in the Bellman equation, i.e., it has to hold that

f̃pz1|xq “ fpz1|zq, for some function f̃ .3

From (1) the Bellman equation using the state x is then

Ṽ pxq “ max
uPΓ̃pxq

"

F̃ px;uq ` β

ż

Ṽ pz1, h̃px;u, z1qqf̃pz1|xqdz1
*

.

1.2 Examples

1.2.1 Example 1: Stochastic growth with productivity shocks

Consider a standard neoclassical growth model in which output is produced according

to the production function yt “ Atk
α
t where At is a productivity shock that follows a

first-order Markov process with conditional density fpAt`1|Atq, kt is capital at t. The

3This condition says that knowledge about the state allows us to make the best possible forecast for

tomorrow.
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investment in standard, the planner has to choose tomorrow’s capital (the control) given

a feasible-set correspondence

Kt`1 P Γpkt, Atq ” r0, Atk
α
t ` p1´ δqkts.

The period-t return to the planner is

F pkt, At; kt`1q “ ln pAtk
α
t ` p1´ δqkt ´ kt`1q .

The planner discounts the future at factor β P p0, 1q. Therefore the dynamic programming

form of this problem is given by

• State: k, A.

• Control: k1,

• Feasible set correspondence: Γpk,Aq “ r0, Akα ` p1´ δqks,

• Return function: F pk,A; k1q “ ln pAkα ` p1´ δqk ` k1q,

• Law of motion: pk1, A1q “ hpk,A; k1, A1q “ pk1, A1q.

• Bellman equation:

V pk,Aq “ max
k1PΓpk,Aq

"

F pk,A; k1q ` β

ż

V pk1, A1qfpA1|Aq dA1
*

.

1.2.2 Example 2: Stochastic growth with i.i.d. shocks and the cash-on-hand

trick

Consider the environment from the previous example. It turns out that for a specific case

it is possible to reduce the dimensionality of the state space to one. This case is the one

where the At is i.i.d. The question that we want to answer is whether A should be a part

of the state or not. Insight: only ‘cash-on-hand’ is relevant as a state. Once we know At,

given that we know kt, we can compute cash-on-hand as

xt “ Atk
α
t ` p1´ δqkt.

In this case, the dynamic programming form of this problem is given by

• State: x,

• Control: k1,

• Feasible set correspondence: Γ̃pxq “ r0, xs,
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• Return function: F px; k1q “ lnpx´ k1q,

• Law of motion: x1 “ h̃px; k1, A1q “ A1k1α ` p1´ δqk1,

• Bellman equation:

Ṽ pxq “ max
k1PΓ̃pxq

"

F̃ px; k1q ` β

ż

Ṽ ph̃px; k1, A1qqfpA1q dA1
*

.

Note that as the conditional density of A1 equal the unconditional density by the i.i.d.

assumption. the expectation in the Bellman equation is correct. We thus see that cash-

on-hand gives us the full information about the economic environment at t and that the

state can be condensed in this case.

1.2.3 Example 3: Savings with stochastic earnings

Time is discrete and finite, t “ 0, . . . , T . Consider the earnings process for ωt given by

ωt “ ρ1ωt´1 ` ρ2ωt´2 ` εt,

where εt „ Np0, σq. At any t, the budget constraint is given by

ct `
at`1

R
ď at ` ωt,

where for simplicity we impose the no-borrowing condition at`1 ě 0, @t. The economy is

populated by a representative household with objective

E0

«

T
ÿ

t“0

βt lnpctq

ff

,

with a0, w0 and w´1 given. The dynamic programming form of this economy is given by

• State: a, w, w´1.

• Control: a1.

• Feasible set correspondence:

a1 P Γtpa, ω, ω´1q “ r0, Rpa` ωqs.

• Return function:

Ftpa, ω, ω´1, a
1
q “ ln

ˆ

a` ω ´
a1

R

˙

.

• Law of motion:
»

—

–

a1

ω1

ω1´1

fi

ffi

fl

“ gtpa, ω, ω´1; a1;ω1q “

»

—

–

a1

ω1

ω

fi

ffi

fl

.
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• Bellman equations (for t “ 0, . . . , T )

Vtpa, ω, ω´1q “ max
a1PΓtpa,ω,ω´1q

"

ln

ˆ

a` ω ´
a1

R

˙

` βE rVt`1pa
1, ω1, ωq|ω, ω´1s

*

,

where

E rVt`1pa
1, ω1, ω|ω, ω´1qs “

ż 8

´8

Vt`1pa
1, ρ1ω ` ρ2ω´1 ` ε

1, ωqfpε1qdε1,

and VT`1pa, ω, ω´1q “ 0.

To obtain the Euler equation, we proceed as usual by taking the FOC of the Bellman

Equation w.r.t. a1. Assuming an interior solution

´
1

R

1

a` ω ´
a1

R

` βE rV1,t`1pa
1, ω1, ωq|ω, ω´1s “ 0,

where V1,t`1 denotes the derivative of Vt`1 w.r.t. its first argument, and thus by the

envelope theorem

V1,tpa, ω, ω´1q “
1

a` ω ´
a1

R

.

Therefore the Euler equation reads out as

1

a` ω ´
a1

R

“ RβE

»

—

–

1

a1 ` ω1 ´
a2

R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ω, ω´1

fi

ffi

fl

.

1.2.4 Example 4: Discrete-choice McCall Search Model (a ‘real-options prob-

lem’)

We face the problem of a worker decision: which jobs to accept and when to start working.

The simplest model of search frictions is given by the following environment:

• Time is discrete and infinite.

• The worker is infinitely-lived, risk-neutral, and discounts the future at a rate β P

p0, 1q.

• Each period the worker draws a wage offer from a cumulative distribution function

F pwq.

• Draws are independent and identically distributed, with support r0, w̄s.

• Search is undirected in the sense that the worker has no ability to direct her search

towards different parts of the wage distribution (or towards different types of jobs).
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• If the worker accepts the offer, she gets w forever (cannot be fired).

• If she rejects the offer, she gets unemployment benefit b in the current period, and

draws w1 in the next period, where 0 ă b ą w̄.

Dynamic programming form: We focus on the state in which the worker is still

searching4

• Shock: w.

• State: w.

• Control: u P t0, 1u, where 0 means reject the wage offer and 1 means accept the

wage offer.

• Feasible set correspondence: Γpwq “ t0, 1u.

• Return function: F pw, uq “ u ¨ w ` p1´ uq ¨ b.

• Law of Motion: w1 “ Hpw, u;w1q “ w1.

Bellman equation: Let V accpwq be the value of accepting an offer w, and let V rejpwq

be the value of rejecting an offer w. Then

V acc
pwq “ w ` βw ` β2w ` ¨ ¨ ¨ “

8
ÿ

t“0

βtw “
w

1´ β
, (2)

V rej
pwq “ b` βE rV pw1q|ws “ b` βE rV pw1qs “ b` β

ż w̄

0

V pw1qfpw1q dw1. (3)

Therefore, let V pwq be the value of having drawn an offer w (before accepting or rejecting),

which is given by5

V pwq “ max
uPt0,1u

"

u
w

1´ β
` p1´ uq

„

b` β

ż w̄

0

V pw1qfpw1qdw1
*

. (4)

4We could have also defined employed-unemployed as a separate state. Employed state is trivial, you

can try to define the problem in this way as an exercise.
5Can also write it as

V pwq “ max
 

V accpwq, V rejpwq
(

“ max

"

w

1´ β
, b` β

ż w̄

0

V pw1qfpw1qdw1
*

.
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Characterization of optimal policy: The optimal policy must be a cut-off rule, i.e.,

gpwq “

#

1 if w ě w˚,

0 if w ă w˚,
(5)

for some number w˚ P R`, call it the reservation wage of the worker. To compute this

value, note that when drawing and offer w “ w˚, she must be indifferent between accepting

or rejecting it. Therefore, by indifference at w˚ we must have

V̄rej

w

1
1´β

Vaccpwq

Vrejpwq

w˚1 w̄

Reject Accept

Formally,

w˚

1´ β
“ V acc

pw˚q “ V̄rej “ V rej
pw˚q “ b` β

ż w̄

0

V pw1qfpw1q dw. (6)

As the worker is infinitely-lived, she will face the same problem in the next period if she

rejects. In other words, she will have to draw a new offer w1, which according to the policy

rule (5) she will reject if w1 ă w˚ obtaining V̄rej, and accept if w1 ě w˚. Consequently,

the previous expression can be rewritten as

w˚

1´ β
“ b` β

»

—

—

—

–

ż w˚

0

w˚

1´ β
fpw1q dw1

looooooooooomooooooooooon

Reject tomorrow

`

ż w̄

w˚

w1

1´ β
fpw1q dw1

looooooooooomooooooooooon

Accept tomorrow

fi

ffi

ffi

ffi

fl

. (7)

To obtain w˚, add and subtract

w̄
ż

w˚

w˚

1´ β
fpw1q dw1,

to the right-hand side of the previous equation obtaining

w˚

1´ β
“ b` β

„
ż w̄

0

w˚

1´ β
fpw1qdw1 `

ż w̄

w˚

w1 ´ w˚

1´ β
fpw1qdw1


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Simplyifying yields

w˚ ´ b
loomoon

”gpw˚q

“ β

ż w̄

w˚

w1 ´ w˚

1´ β
fpw1q dw1

loooooooooooooomoooooooooooooon

”hpw˚q

, (W)

where gpw˚q denotes the cost of searching one more time after drawing an offer w˚ and

hpw˚q the expected discounted benefit of searching one more time (and obtaining a higher

offer w1 ą w˚). Note that gp0q “ ´b, g1pwq ą 0, hpw̄q “ 0, and by Leibniz rule

h1pw˚q “ ´
w˚ ´ w˚

1´ β
fpw˚q `

ż w̄

w˚
´

1

1´ β
fpw1q dw1 ă 0.

Therefore, (W) has a unique solution w˚.

Comparative statics:

• b Ò ùñ gpw˚q shifts down, hp¨q unaffected ùñ w˚ Ò,

• β Ò hp¨q shifts up, gpw˚q unaffected ùñ w˚ Ò.

One can evaluate dw˚

db
and dw˚

dβ
using the Implicit Function Theorem.6 Consider the

following equilibrium equation

Epx˚pαq, αq “ 0, (E)

where α P R are parameters, and x˚ : RÑ R is a policy or outcome function of interest.

Totally differentiating (E) yields

Expx
˚
pαq, αq dx˚ ` Eαpx

˚
pαq, αq dα “ 0,

so that for infinitesimal dx˚, dα

x˚1pαq “
dx˚

dα
“ ´

Eαpx
˚pαq, αq

Expx˚pαq, αq
.

6Homework: Find dw˚

db and dw˚

dβ . Can you say something about ą 0, ă 0, ą 1 or ă 1?
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2 Euler Equations in Stochastic Framework

2.1 General framework

Time is discrete and infinite. Let zt for t “ 1, 2, . . . denote a sequence of shocks to

an economy, drawn from a finite set. This process may have an arbitrary probability

distribution over time. We will denote histories of shocks up to t as

zt ” pz1, z2, . . . , ztq,

and the set of all possible histories of length t by Zt. As an example, take a process zt

that can only take two values from the set S “ tz
¯
, z̄u and consider the specific history

z3
“ pz̄, z

¯
, z̄q.

Note that z3 P Z3 “ Z ˆ Z ˆ Z. Usually we will want to to refer to a sub-history of a

history zt. For example, to refer to the history of shocks in zt up to time t´ 1, we write

ztÑt´1. In our example, we would have

z3
Ñ2 “ pz̄, z¯

q.

To refer to a single shocks zk in a given history zt we use sub-indexes. For example,to

read off the last shock in a history zt we write ztt . In the example, this would be ç

z3
3 “ z̄.

The probability that a history zt occurs is denoted by πtpz
tq. We may view tπtp¨qu

8
t“1 as

a sequence of functions mapping from the set tstu of possible histories at t to R. This

sequence of probability functions fulfills the following consistency requirements:

ÿ

zt

πtpz
t
q “ 1, for all t,

ÿ

zt`1:zt`1
Ñt “z

t

πt`1pz
t`1
q “ πtpz

t
q, for all st, for all t.

The first requirement says that the unconditional probabilities of all histories at must sum

up to one at any t. The second says that the sum of probabilities following a particular

node in the event tree must equal the probability of reaching that node. Conditional

probabilities are given by

Prpzt`1 “ z1|ztq “
πt`1ppz

t, z1qq

πtpztq
.

The policy function at time t (i.e. choices made by the agents at t) is conditioned on

information at time t. Formally, they are functions defined on the set oh histories at that
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point: gt : tstu Ñ R. This requirement ensures that ‘agents cannot see into the future’.7

The objective of the representative agent of the economy is to choose a sequence of policy

functions tgtp¨qu in order to maximize

max
tgtp¨qu

8
t“0

8
ÿ

t“0

βt
ÿ

ztPZt

πtpz
t
qFt

´

zt,
 

gτ pz
t
Ñτ q

(t

τ“0

¯

, (8)

where Ftp¨q is the return function at t, which we allow to depend on the history of the

shock and all decisions taken along this history up to t.

2.2 Examples

2.2.1 The stochastic consumption-savings model

Consider a standard consumption-savings problem where the wage at any t, zt, can take

only two values zt P Z “ tz
¯
, z̄u. The transition probability between wages from t to t` 1

is given by Prpzt`1 “ z̃|zt “ z̃q “ 2{3. As before, we will denote the set of all possible

histories of length t as Zt. We will look for policy functions ctpz
tq and at`1pz

tq such that

ct : Zt
Ñ R`0 ,

at`1 : Zt
Ñ R`0 .

Note that consumption for period t and assets for period t` 1 are chosen in period t, so

both are policy functions at t and we write ctpz
tq and at`1pz

tq. The budget constraint of

the representative agent at node zt is

at`1pz
t
q “ Rrztt ` atpz

t
Ñt´1q ´ ctpz

t
qs,

where we impose an exogenous constant no-borrowing limit a
¯
, i.e. at`1pz

tq ě a
¯
, @zt, t.

Recall that ztt denotes the last element of history zt and atpz
t
Ñt´1q refers to all the history

up to t, i.e., the previous sub-history ending up in node zt.

We can state the maximization problem as

max
tpctpztq, at`1pztqqztPZtu

8

t“0

8
ÿ

t“0

βt
ÿ

stPSt

πtpz
t
qu

`

ctpz
t
q
˘

looooooooooomooooooooooon

E0rupctqs

s.t. at`1pz
t
q ď R

“

ztt ` atpz
t
Ñt´1q ´ ctpz

t
q
‰

, @zt P Zt, @t,

at`1pz
t
q ě a

¯
, @zt P Zt, @t,

a0 given.

7In measure-theoretic terms, one would say that these functions are measurable with respect to the

filtration Ft created by the shock history st
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Note that as u1p¨q ą 0, the budget constraint will hold with equality for any zt P Zt

and @t. To solve this model we set up the following Lagrangean

L
´

 `

ctpz
t
q, at`1pz

t
q, λtpz

t
q, µtpz

t
q
˘

ztPZt

(8

t“0

¯

“

“

8
ÿ

t“0

#

βt
ÿ

ztPZt

πtpz
t
qu

`

ctpz
t
q
˘

` ¨ ¨ ¨

¨ ¨ ¨ `
ÿ

ztPZt

λtpz
t
q
“

R
`

ztt ` atpz
t
Ñt´1q ´ ctpz

t
q
˘

´ at`1pz
t
q
‰

` ¨ ¨ ¨

¨ ¨ ¨ `
ÿ

ztPZt

µtpz
t
q
“

at`1pz
t
q ´ a

¯

‰

+

The F.O.C. necessary conditions yield 8

BL p¨q

Bctpztq
“ βtπtpz

t
qu1

`

ctpz
t
q
˘

´ λtpz
t
qR “ 0, @zt P Zt, @t,

BL p¨q

Bat`1pztq
“ ´λtpz

t
q ` µtpz

t
q `

ÿ

zt`1:zt`1
Ñt “z

t

Rλt`1pz
t`1
q “ 0, @zt P Zt, @t.

Combining both conditions we obtain

βtπtpz
t
qu1

`

ctpz
t
q
˘

´ µtpz
t
q “ R

ÿ

zt`1:zt`1
Ñt “z

t

βt`1πt`1pz
t`1
qu1

`

ct`1pz
t`1
q
˘

.

Dividing both sides by βtπtpz
tq yields

u1
`

ctpz
t
q
˘

ě Rβ
ÿ

zt`1:zt`1
Ñt “z

t

πt`1pz
t`1q

πtpztq
loooomoooon

Prpzt`1|ztq

u1
`

ct`1pz
t`1
q
˘

loooooooooooooooooooooomoooooooooooooooooooooon

Conditional expectation of mg. utility

, @zt P Zt, @t,

which is the Euler equation with the usual interpretation.9 Note that the Euler equation

holds with equality as long as at`1pz
tq ą a

¯
(unconstrained). Otherwise it holds with ą

and the consumer is constrained, choosing at`1pz
tq “ a

¯
. Restricting to the interior case,

we write

u1
`

ctpz
t
q
˘

“ RβE
“

u1
`

ct`1pz
t`1
q
˘

|zt
‰

“ RβEt
“

u1
`

ct`1pz
t`1
q
˘‰

, @zt P Zt, @t,

8Note that in the second F.O.C., the summation includes all the possible histories zt`1 that until time

t have the same past as zt, that is, we sum over the continuation of a particular node in the event history

tree.
9Of course, we could substitute the values for the conditional probabilities πt`1{πt, but we will stay

with the more general notation because it carries over to other settings.
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where the second line is just different notation but means exactly the same as the first

line.10 In most papers and books we can find it written in short-hand notation as

u1 pctq “ RβEt ru1 pct`1qs , @t,

where the dependence of ct, ct`1 and kt`1 on histories is understood.

2.2.2 The stochastic neo-classical growth model

Consider a neo-classical growth economy with production function

yt “ ztF pktq,

where zt is an i.i.d. productivity shock that takes a low value z
¯
ą 0 with probability

0.5 and a high values z̄ ą z
¯

with probability 0.5 each period. Therefore, the probability

functions πtp¨q have the following properties:

πtpz
t
q “ 0.5t, for all zt, t,

Prpzt`1 “ z
¯
|ztq “ Prpzt`1 “ z̄|ztq “ 0.5, for all zt, t.

The capital stock for period t` 1 is chosen in period t, so it is a policy function at t and

we write kt`1pz
tq. Also consumption is decided at t, so we write ctpz

tq. The feasibility

constraint for the agent at node zt is

kt`1pz
t
q ď zttF pktpz

t
Ñt´1qq ` p1´ δqktpz

t
t´1q

loooooooooooooooooooomoooooooooooooooooooon

”fpktpztÑt´1q,ztq

´ctpz
t
q.

Under our usual regularity assumptions about up¨q, this constraint will always hold with

equality, thus we can write the criterion on this problem as

U “
8
ÿ

t“0

βt
ÿ

ztPZt

πtpz
t
qu

`

fpktpz
t
Ñt´1q, ztq ´ kt`1pz

t
q
˘

.

In an event-tree figure we can easily see that the choice kt`1pz
tq affects utility at the node

zt and the two subsequent nodes zt`1 that follow up. So the first-order condition with

respect to kt`1pz
tq, for any zt P Zt and any t is

BU

Bkt`1pztq
“ ´βtπtpz

t
qu1pctpz

t
qq ` ¨ ¨ ¨

¨ ¨ ¨ `
ÿ

zt`1:zt`1
Ñt “z

t

βt`1πt`1pz
t`1
qu1pct`1pz

t`1
qqfkpkt`1pz

t`1
Ñt q, zt`1q “ 0.

10Note that this is just the definition of conditional expectations: Etrhpzt`kqs ” Erhpzt`kq|zts for any

function hp¨q, k ą 0 and some stochastic process zt.
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Dividing by πtpz
tq we obtain

u1pctpz
t
qq “ β

ÿ

zt`1:zt`1
Ñt “z

t

πt`1pz
t`1q

πtpztq
u1pct`1pz

t`1
qqfkpkt`1pz

t`1
Ñt q, zt`1q, @zt P Zt, @t,

where we recognize the conditional probabilities in the fractions πt`1{πt.
11 Now we can

bring the Euler equation into its typical form, which is

u1pctpz
t
qq “ βE

“

u1pct`1pz
t`1
qqfkpkt`1pz

t`1
Ñt q, zt`1q|z

t
‰

“ βEt
“

u1pct`1pz
t`1
qqfkpkt`1pz

t`1
Ñt q, zt`1q

‰

, @zt P Zt, @t.

The intuition for this Euler equation is straightforward: the marginal utility loss from

investing one more unit at node zt must equal the marginal discounted expected gain,

which is the marginal increase in productivity times marginal utility of consumption at

the respective nodes at t` 1.

11Of course, we could simplify the conditional probabilities due to the i.i.d. assumption, but we will

stay with the more general notation because it carries over to other settings.
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3 Recursive Competitive Equilibrium

3.1 Environment

• Production function: yt “ AtF pKt, Ltq, where At follows a first-order Markov pro-

cess.

• Measure 1 of identical households, indexed by i P r0, 1s. They can save in capital

and work l
piq
t P r0, 1s. The budget constraint (for each household), is given by

c
piq
t ` k

piq
t`1 ď wtl

piq
t ` p1´ δ ` rtqk

piq
t , @i, @t. (BC)

Remark. In this setting, we will look for a symmetric equilibrium where every single

agent does the same (but we are not imposing that). Thus we want to obtain

k
piq
t “ kt, l

piq
t “ lt, c

piq
t “ ct, @i, @t,

as the equilibrium outcome.

• Aggregation 12

Kt “

ż 1

0

k
piq
t di “

ż 1

0

ktdi “ kt, @t,

where the second equality comes from the symmetric equilibrium allocation. This

is known as the ‘big-K, little-k trick’. Similarly, we also have

Lt “

ż 1

0

l
piq
t di “

ż 1

0

ltdi “ lt @t.

• Central idea of recursive competitive equilibrium:

– Prices are a function of the economy’s state (not the entire history).

– Define individual rationality from the Bellman equations instead of sequence

problems.

• State:13 Xt “ pAt, Ktq.

• Prices: rt “ rpXtq, wt “ wpXtq, i.e. rt “ rpAt, Ktq, wt “ wpAt, Ktq.

12Note that one agent cannot move Kt or Lt on their own by choosing pk
piq
t , l

piq
t q as they are atomistic

agents.
13Note that Lt is not a state, it is decided in each period, as consumption Ct.
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3.2 Firm’s problem

Price-taking behaviour. Profit maximization

max
tkd,ldu

AF pkd, ldq ´ rpXqkd ´ wpXqld.

In equilibrium

rpXq “ AFkpk
d, ldq, (r)

wpXq “ AFlpk
d, ldq, (w)

and the firm makes zero profits, thus

AF
`

kd˚, ld˚
˘

“ rpXqkd˚ ` wpXqld˚.

3.3 Household’s problem

• Agents have a perceived law of motion for K given by

K 1
“ GpA,Kq.

Again, in this environment agents can’t directly modify K by choosing k.

• Given their perceived law of motion, agents can forecast prices

r1 “ rpA1, K 1
q,

w1 “ wpA1, K 1
q.

• State for the individual: k (individual capital stock), A (TFP) and K (aggregate

capital stock).

3.3.1 Bellman Equation

V pA,K; kq
looomooon

state

“max
c,l,k1

tu pc, 1´ lq ` βE rV pA1, G pA,Kq ; k1q |Asu

s.t. c` k1 ď w pA,Kq l ` p1´ δ ` r pA,Kqq k

(BE)

with decision rules (or policy functions)

c˚ “ gcpA,K; kq

l˚ “ glpA,K; kq

k1˚ “ gk
1

pA,K; kq

,

/

/

.

/

/

-

(g)

The state in the Bellman equation14 is given by pA,K; kq, where in principle we allow

households to deviate from others by choosing their own k.

14The Bellman equation is given by both the equation and the constraint.
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3.3.2 Rational Expectations

In this model Rational Expectations imply that the perceived Law of Motion is equal to

the realized law of motion, i.e.

K 1
“ GpA,Kq “

ż 1

0

k
1piq
t di “ k1˚ “ gk

1

pA,K;Kq
loooooooooomoooooooooon

Policy function

,

where we use the ‘big-K, little-k’ trick, and we substitute k “ K in the policy func-

tion because we are in a symmetric equilibrium. Thus K 1 “ k1˚ is implied by rational

expectations.

3.4 Equilibrium

Definition 3.1 (RCE). A Recursive Competitive Equilibrium (RCE) consists of a value

function V pA,K; kq and policy functions
 

gcpA,K; kq, glpA,K; kq, gk
1

pA,K; kq
(

for the

household, policy functions
 

kdpA,Kq, ldpA,Kq
(

for the firm, a law of motion GpA,Kq

and pricing functions rpA,Kq, wpA,Kq such that:

•
 

kdpA,Kq, ldpA,Kq
(

maximize firm’s profits given rpA,Kq, wpA,Kq for all pA,Kq,

•
 

V pA,K; kq, gcpA,K; kq, glpA,K; kq, gk
1

pA,K; kq
(

solve the household’s problem, i.e.

(BE), given rpA,Kq, wpA,Kq, GpA,Kq for all pA,Kq,

• expectations are rational, i.e., GpA,Kq “ gk
1

pA,K;Kq,

• markets clear:

ldpA,Kq “ glpA,K;Kq, @pA,Kq,

kdpA,Kq “ K, @pA,Kq,

gcpA,K;Kq ` gk
1

pA,K;Kq “ AF pK, glpA,K;Kq
looooomooooon

“ldpA,Kq

q ` p1´ δqK, @pA,Kq.

Let’s derive the Euler Equation of this problem. The F.O.C. w.r.t. k1 in (BE) (in

equilibrium) yields

´ uc
`

gc pA,K; kq , 1´ gl pA,K; kq
˘

` βE
”

Vk

´

A1, G pA,Kq ; gk
1

pA,K; kq
¯

|A
ı

“ 0. (9)

Note that k1 does not impact K 1 as the agent is atomistic.15 As usual, by the envelope

theorem we have

Vk pA,G pA,Kq ; kq “
Bupc, 1´ lq

Bk
,

15Important not to make the household a monopolist who can manipulate prices!
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Knowing that the budget constraint (BC) will hold with equality we can substitute out c

in the previous equation obtaining

Vk pA,G pA,Kq ; kq “
Bu pw pA,Kq l ` p1´ δ ` rpA,Kqq k ´ k1, 1´ lq

Bk

“ p1´ δ ` r pA,Kqqucpc, 1´ lq.

(10)

Combining (9) and (10) we can rewrite the F.O.C. of (BE) as

uc
`

gc pA,K; kq , 1´ gl pA,K; kq
˘

“ βE
“

p1´ δ ` r pA1, K 1
qqucpg

c
pA,K; kq , 1´ gl pA,K; kqq|A

‰

,

where in the equilibrium we also know that

r pA1, K 1
q “ A1FK pG pA,Kq , L

1
q . (11)

Then

uc

¨

˚

˝

gc pA,K;Kq
loooooomoooooon

c˚t

, 1´ gl pA,K; kq
looooomooooon

l˚t

˛

‹

‚

“

“ βE

»

—

–

p1´ δ ` A1FK pG pA,Kq , L
1
qq

loooooooooooooooooomoooooooooooooooooon

MPKt`1

ucpg
c
pA1, GpA,Kq;K 1

q
looooooooooomooooooooooon

c˚t`1

, 1´ gl pA1, GpA,Kq;K 1
q

looooooooooomooooooooooon

l˚t`1

q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A

fi

ffi

fl

You may check that this is the same equation that you can obtain when solving the

planner’s problem, thus the allocations prescribed by the RCE are exactly the same as

the ones given by a planner. As a consequence, RCE is efficient.
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